Pairings for beginners

Craig Costello

Contents

6.4 Chapter summary

[7_The state-of-the-art

7.1 lrrelevant factors (a.k.a. denominator eliminatior{)

7.6 Other optimisation

[S_Summa.rﬂ
Bibi |

Symbols and abbreviations

(f)
[n]P
HE
AM(K)

(D)

Al

P"(K)

divisor of the function f

scalar multiplication (exponentiation) of P by n 2 Z
number of points onE

ane n-space over the eldK

e ective part of the divisor D

eta (T) pairing

nite eld with qelements

full extension eld

base eld subgroup:E[r]\ ker([1]) (in Type 3 pairing)
trace-zero subgroupE|[r]\ ker([g) (in Type 3 pairing)
orderr subgroup oquk (commonly ther-th roots of unity)
point at in nity on an elliptic curve E

algebraic closure of the eldK

projective n-space over the eldK

occurs as the distortion map on supersingular curves and as
the GLV endomorphism

i-th cyclotomic polynomial

g -power Frobenius endomorphism:x;y) 7! (x9; y9)

EO
E(K)

eP; Q)

the (un)twisting isomorphism

occurs as both the isomorphism fron®, to G; and as the GLS

isomorphism

“-th division polynomial on E (for odd ")

ratio between base eld size and subgroup size for a pairing-

friendly curve
ate pairing

an arbitrary curve

(imaginary quadratic) hyperelliptic curve of genusy

occurs as both a divisor orE and the CM discriminant of E

degree of twist

divisor (P) (O)

divisor (Q) (O)

an elliptic curve

a general pairing

twisted curve (de ned overFye-q)

set of K -rational points on E

pairing of P and Q (the paired value)
elliptic curve de ned over K

the (entire) r-torsion

function with divisor (fnp) = m(P) (Im]P) (m
genus of a curve

arbitrary eld

embedding degree dE (with respect togandr)

1)(0)

t
T (P;Q)
tr(P; Q)
w: (P; Q)

atTr

BKLS GHS

BLS

BN

CM
Deg(D)
Div°(E)
Dive, (E)
DLP
ECC
ECDLP
End(E)
Gal(L=K)

GLS

multiplicity of point P in associated divisor
generator ofG;

generator ofG,

order of the large prime subgroup irE (Fg)
ate pairing loop parameter T =t 1)
trace of Frobenius

order r reduced Tate pairing

order r Tate pairing

order r Well pairing

anti-trace map
Barreto-Kim-Lynn-Scott/Galbraith-Harrison-Soldera algorithm
Barreto-Lynn-Scott families
Barreto-Naehrig family with k =12
complex multiplication

degree of the divisorD

group of degree zero divisors o&

group of divisors onE=F,

discrete logarithm problem

elliptic curve cryptography

elliptic curve discrete logarithm problem
endomorphism ring ofE

Galois group ofL over K

Galbraith-Lin-Scott method

GLV Gallant-Lambert-Vanstone method

HECC hyperelliptic curve cryptography

KSS Kachisa-Schaefer-Scott families

MNT Miyaji-Nakabayashi-Takano (construction/criteria)
NIST National Institute of Standards and Technology
NSS not supersingular curves

ordp () the multiplicity of f at P onE

PBC pairing-based cryptography

Pic’(E) Picard group of E

Prin(E) group of principal divisors onE

QR(0) set of quadratic residues modulaq

suppD) support of the divisor D

Tr trace map

Vi

Chapter 1

Introduction

A cionados of cryptographic pairing computation are oftenasked by interested
newcomers to point towards literature that is a good startig point. My answer
usually di ers depending on the mathematical background Janteered from the
\pairing beginner", but almost always involves accordingl picking a subset of
the following excellent references.

Galbraith's chapter [Gal05] is a stand-out survey of the a (up until
2005). It provides several theorems and proofs fundamented pairing-
based cryptography and gives some useful toy examples thhdistrate key
concepts.

Lynn's thesis [Lyn07] is also a great survey of the entire ara of pairing
computation (up until 2007), and gives all the details surronding the pio-
neering papers he co-authored [BKLS02,BLS02,BLS03, BL$O4hich are
themselves good starting points.

The rst chapter of Naehrig's thesis [Nae09, Ch. 1] convemdy presents
the necessary algebro-geometric results required to be eld read most of
the literature concerning pairing computation.

Scott's webpage[[Sco04] gives a short and very friendly inttuction to
the basics of the groups involved in pairing computations bgneans of an
illustrative toy example.

2 Chapter 1. Introduction

In his new chapter entitled Algorithmic Aspects of Elliptic Curves, Silver-
man's second edition [SII09, Ch. XI.7] includes a conciserimduction to
pairing-based cryptography that also points to foundatioal results found
elsewhere in his book.

In addition, digging up talks from some of the big players intte eld is usually
(but not always!) a good way to avoid getting bogged down by mor technical
details that slow one's progress in grasping the main idealn particular, we refer
to the nice talks by Scott [Sco07a, Sco0r7b] and Vercauterévef06h,Ver064].

In any case, correctly prescribing the best reading routerf@a beginner nat-
urally requires individual diagnosis that depends on theiprior knowledge and
technical preparation. A student who is interested in learimg pairings, but who
has never seen or played with an elliptic curve, may quicklydzome overwhelmed
if directed to dive straight into the chapters of Silvermars book or Naehrig's the-
sis. This is not due to lack of clarity, or to lack of illuminaing examples (both
chapters are ample in both), but perhaps more because of thast amount of
technical jargon that is necessary for one to write a completand self-contained
description of cryptographic pairings. On the other hand, minformal, example-
driven approach to learning the broad eld of pairing compuation may ease the
beginner's digestion in the initial stages. For instance, aovice would be likely
to nd it more bene cial to rst see the simple toy example of the quadratic
twisting isomorphism in action on Scott's webpage [ScoO4before heading to
Silverman's book [[Sil09, Ch. X.5.4] to see all possible tiizy isomorphisms
formally de ned, and then later returning to his earlier chaters (speci cally Ch.
11.2) to read about maps between curves in full generality.

In this light we discuss the major aim of this text. We intend b let illus-
trative examples drive the discussion and present the key rmepts of pairing
computation with as little machinery as possible. For those¢hat are fresh to
pairing-based cryptography, it is our hope that this chapte might be particu-
larly useful as a rst read and prelude to more complete or adwced expositions
(e.g. the related chapters in[[Gal12]).

On the other hand, we also hope our beginner-friendly intelains do not leave
any sophisticated readers dissatis ed by a lack of formajitor generality, so in
cases where our discussion does sacri ce completeness, iNateast endeavour
to point to where a more thorough exposition can be found.

One advantage of writing a survey on pairing computation in @2 is that,
after more than a decade of intense and fast-paced researghrbathematicians
and cryptographers around the globe, the eld is now racingowards full matu-
rity. Therefore, an understanding of this text will equip the reader with most
of what they need to know in order to tackle any of the vast liteature in this
remarkable eld, at least for a while yet. Anyone who understnds our exam-
ples will also comfortably absorb the basic language of algaic geometry in
the context of curve-based cryptography. Since we are aingrihe discussion at
active readers, we have matched every example with a corresging snippet of
(hyperlinked) Magma [BCP97] coo@ where we take inspiration from the helpful
Magma pairing tutorial by Dominguez Perezet al. [DKSO0€]. In the later chap-
ters we build towards a full working pairing code that encomgisses most of the
high-level optimisations; this culminates to nish the chater in Example[Z.5.1.

The text is organised as follows. We start in Chapter]2 by giag an overview
of elliptic curve cryptography (ECC). Indeed, elliptic cuves are the main object
on which cryptographic pairings take place, so this rst chpter forms a basis for
the entire text. In Chapter [3 we introduce the important conept of divisors, as
well as other essential theory from algebraic geometry thé needed to properly
understand cryptographic pairings. In Chaptef 4 we detaillie speci c elliptic
curve groups that are employed in a cryptographic pairing, éfore presenting
Miller's algorithm to compute the Weil and Tate pairings in Chapter 5. In
Chapter [we introduce the notion ofpairing-friendly curves and give a brief
survey of the most successful methods of constructing thenin Chapter [7 we
bring the reader up to speed with the landmark achievementsd improvements
that have boosted pairing computation to the point it is todg.

LIf one does not have access to Magma, the scripts we provide abe run at the online
Magma calculator: http://magma.maths.usyd.edu.au/calc/

http://magma.maths.usyd.edu.au/calc/

Chapter 1. Introduction

Chapter 2

Elliptic curves as cryptographic
groups

The purpose of this chapter is to introduce elliptic curves sathey are used in
cryptography. Put simply, an elliptic curve is an abstract ype of group.

Perhaps a newcomer will nd this abstractness apparent imnagately when we
insist that to understand elliptic curve groups in cryptogaphy, the reader should
be familiar with the basics of nite elds F4. This is because, more generally,
elliptic curves are groups which are de ned on top of (over)elds. Even though
elliptic curve groups permit only one binary operation (theso calledgroup law),
the operation itself is computed within theunderlying eld, which by de nition
permits two operations (and their inverses). For a generaleld K, the group
elements of an elliptic curveE are points whose &;y) coordinates come fronK
(the algebraic closure oK), and which satisfy the (a ne) curve equation for E,
given as

E :y?+ ayxy + agy = x°+ apx® + auX + ag; (2.1)

whereay; ;a6 2 K. Equation (Z1) is called thegeneral Weierstrass equation
for elliptic curves. Aside from all the §&;y) 2 K solutions to the equation above,
there is one extra point which can not be de ned using the a neequation, but
which must be included to complete the group de nition. Thispoint is called
the point at in nity , which we denote byO, and we will de ne it properly in a

6 Chapter 2. Elliptic curves as cryptographic groups

moment.

If a;;::;;a5 2 K, then we sayE is de ned over K, and write this as E=K
(the same goes for any extension eld of K). Before we go any further, we
make a convenient simpli cation of the general Weierstrasequation. If the
eld characteristic is not 2 or 3, then divisions by 2 and 3 inK permit the
substitutions y 7! (y ax ag)=2to give E : y? = 4x3 + bpx? + 2kux + b,
and then (x;y) 7! % 33‘)2;1%3 , Which (upon appropriate rescaling) yields the
following simpli ed equation.

E:y?=x3+ax+ b: (2.2)

Equation (2.2) is called theshort Weierstrass equatiorfor elliptic curves, and
will be used all the way through this text. Namely, we will alvays be working
over large prime elds, where the short Weierstrass equatiocovers all possible
isomorphism classes of elliptic curves, so the curves we wgé always be an
instance of (Z.2).

Example2.0.1 (Magma script) E=Q : y? = x3 2is an elliptic curve. Along with
the point at in nity O (which we are still yet to de ne), the set of points overQ is
written as E (Q), and is de ned asE(Q) = f(x;y) 2 A%(Q) : y>= x3 2g[fOg .
The point P = (Xp;Yp) = (3;5) lies iNE(Q), as doQ = (Xq;YQ) = 1a: 10

and R = (Xg;yr) = 223, 5028835 50 we can writeP; Q;R 2 E(Q). We
usually write E to represent the group of points over the full algebraic close,
so for example, the pointS = (Xs;ys) = O; P 2 2 E =E(Q), but S62E(Q).

Soon we will be de ning the binary group operation on E using rational

formulas in the underlying eld, so an active reader can retun to this example
with these formulas to verify that R = P Q, where xg;yr are computed
from Xp;Yp;Xq; Yo Using additions and multiplications (also subtractions ad
inversions) in Q. Furthermore, it can also be veried thatQ = P P, so that
R=P P P; we usually write these axQ = [2]P and R = [3]P, where
|=> P{Z_Fi = [n]P in general. To nish this example, we remark that if

n
(x%y9 2 E, then (x% y9 2 E (but is not distinct if y°= 0), which is true for
any elliptic curve in short Weierstrass form.

Example 2.0.2 (Magma script) E=Fy; : y?> = x3+ 4x + 3 is an elliptic curve.
E (F11) has 14 points: (05), (0;6), (3;3), (3;8), (5;4),(5;7), (6;1), (6;10), (7;0),
(9;3), (9; 8), (10; 3), (10; 8), not forgetting the point at in nity O. Notice that all

http://www.craigcostello.com.au/pairings/beginners/2-0-1-EoverQ.txt
http://www.craigcostello.com.au/pairings/beginners/2-0-2-E:F11.txt

but two points come in pairs &%y9 and (x% y9, the exceptions being x%y9 =
(7;0) (sincey®= y°=0) and O. If we form the quadratic extensionFg = Fq(i)
with i?+1 = 0, then considering E over Fg will allow many more solutions, and
give many more points: namely, # (Fg) = 140. In addition to the points in
E(Fq), E(Fg) will also contain those points withx-coordinates inF, that did not
give x3+4x+3 as a quadratic residue inF, (but necessarily do inF), and many
more with both coordinates inFgp nF,. Examples of both such points are (5i)
and (2 +10; 7i +2) respectively. It is not a coincidence that #E (Fq) j # E(Fg),
sinceE (Fg) is a subgroup ofE (Fg).

Not every tuple (a;b 2 K K gives rise to the curve given byf (x;y) =
y?2 (x3+ ax+ b) =0 being an elliptic curve. If there existsP = (xp;yp) on f
such that both partial derivatives %and %;vanish simultaneously atP, then P
is called asingular point and f is also deemed singular. Conversely, if no such
point exists, f is callednon-singular, or smooth and is then an elliptic curve. It
is easy enough to show that a singularity occurs if and only #a3 + 2717 = 0
(see [Sil0D, Ch. 1.1, Prop. 1.4]), so as long asa#%+ 27* 6 0 in K, then
E=K :y2= x3+ ax+ bis an elliptic curve.

In cryptography we only ever instantiate elliptic curves deed over nite
elds, but it is often conceptually helpful to view graphs ofelliptic curves overR.
We illustrate the di erence between singular and non-sindar (smooth) elliptic

curves in Figured Z11-2]4.

O

Figure 2.1 Figure 2.2 Figure 2.3: Figure 2.4:
Singular curve Singular curve Smooth curve Smooth curve
y?=x3 3x+2 y? = x3 y2=x3+x+1 y2=x3 x
over R. over R. over R. over R.

8 Chapter 2. Elliptic curves as cryptographic groups

2.1 The group law: the chord-and-tangent rule

We now turn to describing the elliptic curve group law, and iis here that viewing
pictures of elliptic curves overR is especially instructive. We start with a less
formal description until we de ne the role of the point at in nity O. The group
law exploits the fact that, over any eld, a line (a degree onequation inx and
y) intersects a cubic curve (a degree three equation and y) in three places
(this is a special case of a more general theorem due to Bez{idar77, 1.7.8]).
Namely, if we run a line” :y = x + between two pointsP = (xp;yp) and
Q = (Xq;Yo) on E, then substituting this line into E : y? = x3+ ax + b will
give a cubic polynomial inx, the roots of which are thex-coordinates of the
three points of intersection between and E. Knowing the two roots (xp and
Xgq) allows us to determine a unique third root that correspond#o the third and
only other point in the a ne intersection ~\ E, which we denote by R (the
reason will become clear in a moment). The point R is then \ ipped" over the
x-axis to the point R. In general, the elliptic curve composition law is de ned
by this process, namelyR = P Q. When computingR = P P, the line °
is computed as the tangent toE at P. That is, the derivatives of * and E are
matched at P, so (counting multiplicities) ~ intersectsE \twice" at P. Figures
2.5 andZ.6 illustrate why this process is aptly named thehord-and-tangentule.

R=P Q

Figure 2.5: Elliptic curve addition. Figure 2.6: Elliptic curve doubling.

Having loosely de ned the general group operation, we canwdalso loosely)

2.1. The group law: the chord-and-tangent rule 9

de ne the role of the point at in nity O. To try and place it somewhere in the
above diagrams, one can think 00 as being a point that simultaneously sits
in nitely high and in nitely low in the y direction. This allows us to informally
conceptualise two properties of elliptic curve groups: ty, that the point at
innity O plays the role of theidentity of the group; and secondly, that the
unique inverse of a point is its re ected image over th&-axis (e.g. the R'sin
Figures[Z.H andZJ6 are the respective inverses of tRés, and vice versa). If we
apply the process in the previous paragraph to compute (R), we start by
nding the vertical line that connects them (the dashed lins in Figures.Z.5 and
[2.6). This line also intersectE (twice) at the point at in nity O, which is then
re ected back onto itself, givingR (R) = O. Thus, if we de ne the identity
of the group to beO, then the inverse of any elemenR = (Xr;YyRr) is taken as
R =(XRr; VYRr).
Example 2.1.1 (Magma script) E=R : y?> = x3 2x is an elliptic curve. The
points (1; 1), (0;0) and (2 2) are all onE, and are also on the line :y = x.
Applying the technique described above to compute some expla group law
operations via the line’, we have (1, 1) (0;0) =(2; 2),(2,2) (0;0) =
(L1),and(1; 1) (2;2)=(0;0). All butfour points come in pairs with their
inverse (i.e. &%y9 and (x% vy9); the exceptions being (00), (' 2;0), (P 2;0)
(notice the vertical tangents wheny = 0O in these cases), andD, which are all
their own inverse, e.g. (§0) = (0;0), so (Q0) (0;0)= O on E. The tangent
line °to E at(1, 1)is°:y= ix 32, and it intersects E once more at
(3; #),whichgives (5, 1) (L D=[2(L D=(32)
Example 2.1.2 (Magma script) In this example we consider the same curve
equation as the last example, but this time over a small nite eld, namely
E=F1; :y? = x® 2x. Rational points are injected naturally across to the nite
eld case (as long as there is no con ict with the charactertg), so we can imme-
diately nd the points (0;0), (2;2) and (1, 1) =(10;10) (and their inverses)
in Figure[2.9. In this case, consider performing the groupMaoperation between
the (blue) points (5;7) and (8;10). The line " that joins them isy = x+2, which
intersectsE once more at (101). Negating they-coordinate nds the other point
on the dashed line, and gives (¥) (8;10) = (10; 10).

Example[2.1.2 is also intended to justify why, although (in ryptography) we
only ever use elliptic curves over nite elds, we often opt ¢ illustrate the group
law by drawing the continuous pictures of curves oveR.

http://www.craigcostello.com.au/pairings/beginners/2-1-1-E:R.txt
http://www.craigcostello.com.au/pairings/beginners/2-1-2-E:F11+.txt

10 Chapter 2. Elliptic curves as cryptographic groups

Figure 2.8: Doubling inR.

0123456782910

Figure 2.9: The points (excludingO) on E (F13).

2.1.1 The point at in nity in projective space

We now focus our attention on giving a more formal de nition ér the point at
in nity. So far we have been describing elliptic curves ira ne space as a set
of a ne points together with the point at innity: E = f(x;y) 2 A%2(K) : y? =
x3+ ax+ by[fOg . In general, a more precise way to unify (or include) pointsta
in nity with the a ne points is to work in projective space essentially, instead of
working with points in n-space, we work with lines that pass through the origin
in (n+1)-space. For our purposes, this means our a ne points in 2pace become
lines in 3-space, namely thatx;y) 2 A%(K) corresponds to the line de ned by
all points of the form (x; y;) 2 P?(K), where 2 K . Thatis, P? is A®n

2.1. The group law: the chord-and-tangent rule 11

f (0; 0; 0)g modulo the following congruence condition:Xi; Y1;z1) (X2;Ya; Z2) if

there exists 2 K such that (X1;y1;21) = (X 2; Y 2; Z). Figure[ZI0 illustrates
the relationship between points inA? with their congruence classes (lines) iR?;

the lines in 3-space should also extend \downwards" into theegion whereZ < 0

but we omitted this to give more simple pictures. We reitera that these lines
do not include the point (G 0; 0).

y Z
— Y
X z=1
Three points in A%(K). Three lines in P(K).
Z Z

e

b=(0:1:0)

Three lines in P3(K). Three lines in P(K).

Figure 2.10: Identifying points inA? with lines in P?

We usually use capital letters and colons to denote a (repergative of a) con-
gruence class in projective coordinates, so that in genef® :Y : Z) represents
the set of all points on the \line" in P? that correspond to (x;y) 2 A?. There are
many copies ofA? in P?, but we traditionally map the a ne point (X;y) 2 A2
to projective space via the trivial inclusion &;y) 7! (x : y : 1), and for any
(X :Y :Z)6 O2 P? we map back toA? via (X :Y :Z) 7! (X=Z;Y=Z). The
point at in nity O is represented by (0 : 1 : 0) in projective space (see the last
diagram in Figure[2.10), for which we immediately note that he map back to
A? is ill-de ned.

Example 2.1.3 (Magma script) E=R : y? = x3 + 3x is an elliptic curve. P =

http://www.craigcostello.com.au/pairings/beginners/2-1-3-E:R-Proj.txt

12 Chapter 2. Elliptic curves as cryptographic groups

(3;6) 2 A%(R) is a point on E. In projective space,P becomesP = (3 : 6 :
1) 2 P?(R), which represents all Boints inp(a 6;) for 2p_F_2 rE)f_O ._For
example, the points (1224,4), (3 1, 6 1, 1 1), (3 26 2, 2)in
A3(R) are all equivalent (modulo the congruence condition) irP?(R), where
they are represented byP. As usual, the pointatinnityon EisO=(0:1:0).

The way we de ne the collection of points in projective spacis to homogenise
E :y2 = x3+ ax + b by making the substitution x = X=Z andy = Y=Z, and
multiplying by Z3 to clear the denominators, which gives

Ep:Y?Z = X3+ aXzZ?+ bz (2.3)

The set of points (X;Y;Z) with coordinates in K that satis es (2.3) is called
the projective closureof E. Notice that (0; ; 0) is in the projective closure for
all 2 K , and that all such points cannot be mapped intoA?, justifying the

representative of point at in nity being O = (0:1:0).

Example 2.1.4 (Magma script) Consider E=Fy3 : y? = x®+ 5. There are 15
ane points (X;y) 2 A?(Fy3) on E, which (with the point at in nity O) gives
E(F3) = 16. On the other hand, if we homogenise (or projectifyE to give
Ep=F13: Y2Z = X3+ 5273, then there are 16 classesX(: Y : Z) 2 P?(Fy):
0:1:0,(2:0:1),4:2:1),(4:112:1),(5:0:1),(6:0:1),(76:1),
7:7:1,8:6:1),8:7:1),00:2:1),(10:11:1),(11:6:)1)
(11:7:1),(12:2:1),(12:11:1). Each of these classes reyams several
points (X;Y;Z) 2 A3(F13) whose coordinates satisfyy 2Z = X 3+5Z3 (there are
actually 195 such points, but this is not important). In fact each class represents
in nitely many points on Ep(F13). Any reader that is familiar with Magma, or
has been working through our examples with the accompanyitddagma scripts,
will recognise the representation of points as represeniags in P2.

The projective coordinates X;Y;Z) used to replace the a ne coordinates
(x;y) above are callechomogenous projective coordinatebecause the projective
version of the curve equation in[(Z]3) is homogeneous. Thesagbstitutions (x =
X=Z,y = Y=Z) are the most simple (and standard) way to obtain projective
coordinates, but we are not restricted to this choice of sutiition. For example,
many papers in ECC have explored more general substitutioms the form x =
X=Z'andy = Y=2Z on various elliptic curves[BLO74].

Example 2.1.5 (Magma script) Consider E=F4; : y?> = x3+4x 1. Using

http://www.craigcostello.com.au/pairings/beginners/2-1-4-E:F13-Proj.txt
http://www.craigcostello.com.au/pairings/beginners/2-1-5-E:F41-Proj.txt

2.1. The group law: the chord-and-tangent rule 13

homogeneous coordinates gives rise to the projective eqoatY?Z = X3 +
4X7? 73, with the point at in nity being O = (0 : 1 : 0). An alternative
projection we can use ix = X=Z andy = Y =272, which in this instance give the
projective equationY? = X3Z +4XZ3 Z#, from which the point at in nity
is seen (from puttingZ = 0) to be O = (1 : 0 : 0). Another commonly used
coordinate system is Jacobian coordinates, which use thebstitutions x = X=Z2
and y = Y =23 to give the projective equationY2 = X3+4XZ*4 Z5. In this
case, we substituteZ = 0 to see that the point at in nity is de ned by the line
O=(2: 3:0)2 P?(Fy4).

2.1.2 Deriving explicit formulas for group law computa-
tions

We are now in a position to give explicit formulas for computig the elliptic
curve group law. The chord-and-tangent process that is sunarised in Figures
2.5 and[2.6 allows a simple derivation of these formulas. Werile the formulas
in a ne space, but will soon transfer them into projective s@ace as well. The
derivation of the formulas for point additionsR = P Q and for point doublings
R =P P follow the same recipe, the main di erence being in the calation
of the gradient of the line” :y= x + thatis used. We will rst derive the
formulas for the additionR = P Q in the general case, and will then make
appropriate changes for the general doubling formulas. Bygkneral case", we
mean group law operations between points where neither pois O, and the
points that are being added are not each inverses of one anethwe will handle
these special cases immediately after the general casesteRing back to Figure
2.5, the line” :y = x + thatintersects P = (Xp;Yyp) and Q = (Xq;Yoq) has
gradient = (yo VYp)=(Xo Xp). From here, can simply be calculated as
either =yp XpoOr =Yg Xq,butin the literature we will often see an
unbiased average of the two as = (YyoXp YpXg)=(Xp Xg). From here we
substitute * :y= x + into E :y?= x3+ ax+ bto nd the third a ne point

of intersection, R, in "\ E. Finding the coordinates of R trivially reveals the
coordinates ofR = (Xgr;Yr), Since R = (Xgr; Yr); the roots of the cubic that

14 Chapter 2. Elliptic curves as cryptographic groups

result will be xp, Xo and xg. Namely,

(x Xp)(x X)X xr)=(X’+ax+h (x +)

=x3 2®+(a 2)x+b %z

We only need to look at the coe cient ofx? to determinexg, since the coe cient
on the left hand side is (Xp + Xq + Xg). From here, recovering they-coordinate
is simple, since yr lieson’, so

XR= ° Xp Xq; Y= (Xr+)

This nishes the description of addition in the general caseWhen addingP to
itself (i.e. doubling P { refer back to Figure[2.6), the line” : y= x + s the
tangent to E at P. Thus, its gradient is the derivative function dy=dx of E,

evaluated atP. To obtain dy=dx we di erentiate the curve equation implicitly,

as
d 2y — d 3
&(y = &(X +ax+ b
d ody . o
a{(y)& =3x“+ a
dy _ 3x*+a,
dx 2y
Thus, = ¥(P)=(3x3+ a)=(2yp), and =yp X p. Again, we substitute”

into E, but this time two of the roots of the resulting cubic arexp, so we obtain
Xr andyg as

Xg = 2 Xp; Y= (Xgr+):

This nishes the derivation of doubling formulas in the genel case. We now
complete the group law description by looking at the specialases. The point
at innity O is the identity, or neutral element, so any operation involing it
is trivial. Otherwise, any operation between element® and Q with di erent
x-coordinates employs the general addition. This leaves tliemaining cases of
Xp = Xqo: ()if yp = Yo, thenP andQ are inverses of each otherandd Q = O
(note that this includesyp = yq = 0), and (ii) if yp = yo 60, then P = Q and
we use the point doubling formulas.

2.1. The group law: the chord-and-tangent rule 15

Much of the literature concerning the elliptic curve groupdw tends to present
the complete description in the previous paragraph using aif-then-else" style
algorithm, where the \if" statements distinguish which of the above scenarios
we are in. In optimised cryptographic implementations hower, this is not the
way that the group law operation is coded. This is because tlgroups we use
are so large that the chances of running into a special cas&4t is not general
doubling or general addition) randomly is negligible. Moraver, the parameters
are usually chosen so that we are guaranteed not to run intoése cases. In this
light then, it will soon become clear that the major operatias we are concerned
with are point additions R = P Q and point doublingsR = P P, the formulas
for which are summarised in[(Z]4) and{Z]15) respectively.

(A ne addition) = Yo Y. =Vp Xp;
X0 Xp

(XpiYp) (XQi¥YQ) = (XriYR)= 2 Xp Xqi (Xr+) : (24)

_3xp+a
2¥p
[21(xp;YP) = (XpiYp) (XpiYP) =(XriYR)= 2 2Xp; (Xgr+) : (25)

(A ne doubling)

=Yr Xp,

Example 2.1.6 (Magma script) We revisit the curve E=Q : y?> = x3 2 from
Example[2.0.1 to verify the group law calculations that weretated. We start
with the point doubling of P = (xp;yp) = (3;5), to compute Q = [2]P =

P P using (Z5). Here, = 3)(2%,:a = 3340 = 27 from which follows as
=yp xp=5 2 3= 3 Thus,xq= 2 2 =(2)? 2 3=12,
andyo = (xo+)= (¥ 1 %)= i 9iving (Xq;Yo) = [2(xp;Yp) =
2, 28 For the additon R = P Q, we use the formulas in[{Z}4), so
:)’('g—f(';:(2B 52 3) =3B and =y, xp=5 28 3=
53 Thus, xg = 2 Xp Xg = (38)2 3 &8 = 1888 and yg =
XrR*+ = %3) l2694234213 %303 = 656020304281315’ SO Xr;Yr) = (126;234213; 656020304281315)' Since

Q=[2]P=P P,thenR =P Q =[3]P. We nish this example with a
remark that further justi es the use of nite elds as the underlying elds in
cryptography. It is not too painful to show that P = (3;5) and P =(3; 5)
are the only integral points onE [Sil09, Ch. IX, Prop. 7.1(b)], or that E(Q)
is actually in nite cyclic [Sil09, Ch. IX, Remark 7.1.1], meaning that among

http://www.craigcostello.com.au/pairings/beginners/2-1-6-EoverQpart2.txt

16 Chapter 2. Elliptic curves as cryptographic groups

in nitely many rational points, only two have integer coordnates. Besides the
in nite nature of E(Q) (the lack of any nite subgroups is not useful in the
context of discrete logarithm based cryptographic groupspbserving the growing
size of the numerators and denominators imJP, even for very small values on,
shows why usinge (Q) would be impractical. Using Magma, we can see that the
denominator of they-coordinate of [10P is 290 bits, whilst the denominator in
[100P is 29201 bits, which agrees with the group law formulas i’ @®. and (2.5)
that suggest that denominators of successive scalar muligs of P would grow
guadratically; even Magma takes its time computing [100B], whose denominator
is 2920540 bits, and Magma could not handle the computatiorf fLOO00P. In
Figure[Z11 we plot multiples ofP = (3;5) that fall within the domain x < 6.

Of the rst 10 multiples of P =(3;5) in Of the rst 100 multiples of P =(3;5) in
E(Q), 7 had x < 6. E(Q), 64 had x < 6.

Of the rst 1000 multiples of P = (3;5) E:y2=x3 2overR.
in E(Q), 635 hadx < 6.

Figure 2.11: More and more points (withx < 6) in the in nite group E(Q)

From now on we will only be working with elliptic curves over nite elds.
We start with a simple example of basic group law computatiaon E(F;) to

2.1. The group law: the chord-and-tangent rule 17

summarise the discussion up until this point.

Example2.1.7 (Magma script) E=F,3 : y?> = x3+5x+7 is an elliptic curve, and
both P = (xp;yp) =(2:;5) andQ = (Xq;Yo) = (12; 1) are onE. Using the a ne
point addition formulas in (Z4), we nd R = P Q by rst computing =
)’(’g—ii =135= 410'= 28=18, fromwhich followsas =y Xp=
5 182 = 31=15,s0 :y=18x+15is the line running throughP and Q. We
then compute kr;Yr)=(2 Xp Xq; (Xr+*)),SOXg=18%2 2 12=11
andygr = (18 11+15) =17, meaningR =(11;17). Applying (2.5) to compute
S =[2]P gives °= 3)(2%/:61 = 325 =17 10 1=17 7=4,and °follows as °=
yp Xp =5 4 2=20,s00:y=4x+20 s the tangent line that intersectsE
with multiplicity two at P. We then compute ks;ys)=(& 2xp; (%s+ 9),

Soxg =42 2 2=12andys= (4 12+20)= 68 =1, meaningS = (12;1).

We now give an example of thenultiplication-by-m map onE, de ned as
[m:E! E; P 7! [m]P;

and illustrate the straightforward way to compute it in pradice. This operation

is analogous to exponentiatiorg 7! g™ in Z,, and is the central operation in
ECC, as it is the one-way operation that buries discrete logarithm problems
in E(Fq). To e ciently compute the exponentiation g™ in Z,, we square-and-
multiply, whilst to compute the scalar multiplication [m]P in E(F;), we (because
of the additive notation) double-and-add

Example 2.1.8 (Magma script) Let E=Fip; : y2 = x3 3x 3 so thatr =
E(Fq) = 1039 is prime. LetP = (379;1011)2 E and m = 655, and suppose
we are to computefn]P = [655](379 1011). To double-and-add, we write the (10-
bit) binary representation of m asm = (mg; ::;;mg), = (1;0;1;0;0;0; 1; 1; 1; 1).
Initialising T P, and starting from the second most signi cant bitmg, we
successively comput& [2]T for each bit down tomg, and whenevem; = 1 we
computeT T+P. So, inour case ittakes 9 doublingé [2]T and 5 additions
T T+ P to compute m]P, which ends up being [655](379011) = (388 60).
In general then, this straightforward double-and-add alg@thm will take log, m
doublings and roughly half as many additions to computef]P (if m is randomly
chosen).

http://www.craigcostello.com.au/pairings/beginners/2-1-7-E:F23.txt
http://www.craigcostello.com.au/pairings/beginners/2-1-8-MulByM.txt

18 Chapter 2. Elliptic curves as cryptographic groups

2.1.3 The group axioms

All but one of the group axioms are now concrete. Namely, farlosure if we
start with two points in E(K), then the chord-and-tangent process gives rise
to a cubic polynomial in K for which two roots (the two x-coordinates of the
points we started with) are in K, meaning the third root must also be inK;
the explicit formulas a rm this. The identity and inverseaxioms are ne, since
P O = P,andthe element P suchthatP (P)= O is clearly unique and
well de ned for all P. We also note that the group isabelian since the process
of computingP Q is symmetric. The only non-obvious axiom igssociativity,
ie. showing ¢ Q) R =P (Q R). An elementary approach using
the explicit formulas above can be used to show associatiiby treating all the
separate cases, but this approach is rather messy [Fi0O5]lvEBrman gives a much
more instructive proof [Sil09, Ch. 111.3.4e] using tools tat we will develop in
the following chapter, but for now we o0 er some temporary intition via the
illustration in Figures 212 and(Z.1B.

2.1.4 Speeding up elliptic curve computations

P Q
Figure 2.12: ¢ Q) R. Figure 2.13:P (Q R).

Group law computations on elliptic curves are clearly moreomplicated than
computations in traditional groups that facilitate discree logarithm based pro-
tocols like Fy; the explicit formulas in (2.4) and (2.5) use many eld operions.

2.1. The group law: the chord-and-tangent rule 19

However, in the context of cryptography, the more abstract ature of elliptic
curve groups actually works in their favour. This is esserdlly because attackers
aiming to solve the discrete logarithm problem on elliptic urves also face this
abstractness. The subexponential algorithms that apply tonite eld discrete
Iogarithms@ do not translate to the elliptic curve setting, where the besavail-
able attacks remain generic, exponential algorithms likedHard rho [Pol78]. This
means that elliptic curve groups of a relatively small sizechieves the same con-
jectured security as multiplicative groups in much larger nite elds, i.e. E(Fg,)
and F,, achieve similar security wheng .. For example, an elliptic curve
de ned over a 160-bit eld currently o ers security comparale to a nite eld
of 1248 bits [Smal0, Table 7.2]. Thus, although more eld opsions are re-
quired to perform a group law computation, these operationtake place in a
eld whose operational complexity is much less, and this derence is more than
enough to tip the balance in the favour of elliptic curves. Irmaddition, the smaller
group elements inE(Fg,) implies much smaller key sizes, greatly reducing stor-
age and bandwidth requirements. These are some of the majaasons that
elliptic curves have received so much attention in the realraf public-key cryp-
tography; the eld of elliptic curve cryptography (ECC) has been thriving since
Koblitz [Kob87] and Miller [Mil85] independently suggesté their potential as
alternatives to traditional groups.

One avenue of research that has given ECC a great boost is tladtoptimising
the group law computations. The explicit formulas in a ne coordinates ((2.4)
and (2.5)) would not be used to compute the group law in praate, and in fact
the Weierstrass modeE : y? = x3+ ax + bis often not the optimal curve model
either. A huge amount of e ort has been put towards investigéng other models
and coordinate systems in order to minimise the eld operatns required in
group law computations. One of the initial leaps forward inhis line of research
was the observation that performing computations in projec/e space avoids eld
inversions, which are extremely costly in practice. We ilktrate these techniques
in the following examples.

Example 2.1.9 (Magma script) Consider a general Weierstrass curve(F) :

y? = x3+ ax+ bwhereqis a large prime, and letM , S and | represent the cost
of computing multiplications, squarings and inversions irfF, respectively. To
compute a general a ne point doubling Xgr;Yr) = [2](Xp;Yp) using (2.5) costs

1See Diem's notes orindex calculusfor a nice introduction [Die12].

http://www.craigcostello.com.au/pairings/beginners/2-1-9-ProjAdd.txt
http://ellipticnews.wordpress.com/2012/05/07/246/

20 Chapter 2. Elliptic curves as cryptographic groups

2M +2S+ 1, and to compute a general a ne point addition (Xg; Yr) = (Xp;Yp)
(Xq;Yo) using (2.4) costs M + S+ |. On the other hand, we can transform
the formulas into homogeneous projective space according the substitutions
X = X=Z andy = Y=Z, and we can consider computingXr : Yr : Zgr) =
[21Xp : Yp : Zp)and (Xgr 1 Yr : ZR) = (Xp : Yp : Zp) (Xo : Yo :Zg)oOn
E :Y?Z = X3+ axXZ?+ bZ3. For the addition case, substitutingx; = X;=Z
andy; = Y;=Z fori 2 f P;Q;Rg into the a ne formulas

2
Xg = Yo Yp Xp Xo YR = Yo Yp

Xp X
Xo Xp xo Xp (Xp Xr) VYp

taken from (2.4), gives

0 1, 0 1
Yo Ye Yo Ye
XR: @ZQ ZpA XP XQ Y_R:@ZQ ZpA XP XR Y_P
ZR Xo Xp Zp ZQ’ ZR Xo Xp Zp ZR Zp.
ZQ P ZQ p

After a little manipulation, we can then set Zr to be the smallest value that
contains both denominators above, and update the numerat®raccordingly to
give
Xr=(XpZqg XoZp) ZpZo(YrZq YoZp)? (XpZo XoZp)?(XpZo+ XqZp) ;
Yr = ZpZo(XoYe XpYo)(XpZq XoZp)?
(YrZo YoZp) (YpZo YoZp)?ZpZq (XpZg+ XoZp)(XpZo XoZp)? ;
Zr = ZpZo(XpZo XoZp)*:

The explicit formulas database (EFD)/[BLO74a] reports that he above formulas
can be computed in a total of 1M +2S. The real power of adopting projective
coordinates for computations becomes apparent when we remghat most opti-
mised implementations of4 arithmetic havel ~ 20M, and the multiplication to
inversion ratio is commonly reported to be 80 : 1 or higher. Tus, the 12\ +2S
used for additions in projective space will be much faster #m the 2\ + S+ |
for a ne additions. For completeness, we remark that derivng the projective
formulas for computing Xr : Yr : Zr) = [2](Xp : Yp : Zp) is analogous (but
substantially more compact since we only have the projecgvcoordinates ofP
to deal with), and the EFD reports that this can be done in M +6S, which will
again be much faster than the ®1 +2S+ | in a ne space.

The Weierstrass model for elliptic curves covers all isonmrism classes,
meaning that every elliptic curve can be written in Weierstass form. Other

2.1. The group law: the chord-and-tangent rule 21

models of elliptic curves are usually available if some catidn holds, and (if
this is the case) it can be advantageous to adopt such a moda$ the following
example shows.

Example 2.1.10 (Magma script) If x3+ ax + bhas a root inFg, then Billet and
Joye [BJ03, Eq. 8-10] show that instead of working witlE : y2 = x3+ ax + b,
we can work with the (birationally equivalent) Jacobi-quartic curve J : v? =
au*+ du? + 1, for appropriately de ned a; d (that depend on the root). Here we
write J using (u; v) coordinates so back-and-forth mappings are de ned withau
confusion. Thus, consideE=Fg; : y2 = x3+5x +5, for which x3+5x +5 has 34
as a root, so we will work on the isomorphic curvd=Fg; : v2 = 73u* + 46u? + 1.
Instead of homogeneous projective coordinates, [BJO3] peoti ed under the
substitution u = U=W and v = V=W?, which gives the (non-homogeneous)
projective closure asl : V2 = 73U% + 46U%?W? + W#*. Any point (X;y) 6 O on
E can be taken straight to the projective closure of via

(X;y) 7! 2(x 34): (X +34)(x 34P y?:y ;

with the reverse mapping given by

V + W? AV + W2 BU?
Gr— 1mw i

Uu:v:w)7 2

For example §&;y) = (77;21) mapsto U : V : W) = (86 : 8: 21), and vice versa.
We now look at the formulas for the point addition Us : Va3 : W3) = (U; : V@
Wi1) (U : Vo :W,)onJd : V2= aU*+ dU?W? + W4, taken from [BJ03, Eq.
11], as

Uz = UiWiVo + UoW3Vy;
Va= (WiW2)2 + a(UiUp)? (ViVo + dUiUsWaWo) + 2 aUy Us Wi Wo(UZW2 + U2W2):
W3 = (Wi1W2)2 a(UiUp)?;

where we immediately highlight the relative simplicity of he above formulas
in comparison to the homogeneous projective formulas dezy in the previous
example. Unsurprisingly then, the fastest formulas for Jabi-quartic additions
and doublings outdo those for general Weierstrass curveshomogeneous projec-
tive space. Namely, the current fastest formulas for doulsigs on Jacobi-quartics
cost M +5S and additions cost & + 4S [HWCDQ9], whilst in the previous

http://www.craigcostello.com.au/pairings/beginners/2-1-10-JacobiQ.txt

22 Chapter 2. Elliptic curves as cryptographic groups

example we had M + 6S for doublings and 121 + 2 S for additions.

The Jacobi-quartic curves discussed above are just one exaenof dozens of
models that have been successful in achieving fast group laamputations, and
therefore fast cryptographic implementations. Other welknown models include
Edwards curves/[EdwQ07,BL07b], Hessian curves [JQO1, Smp&id Montgomery
curves [Mon87]. We refer to the EFDL[BLO7a] for a catalogue afl the fastest
formulas for the popular curve models, and to Hisil's thesifHis10] for a general
method of (automatically) deriving fast group law algorithms on arbitrary curve
models. For any reader wishing to delve even further into gup law arithmetic
on elliptic curves, we also recommend the recent, advancedrks by Castryck
and Vercauteren[[CV11], and by Kohel [Koh11].

2.2 Torsion, endomorphisms and point count-
ing

We now turn our focus to the behaviour of elliptic curve group, as they are
used in cryptography. We start by importantly discussing tle possible structures
exhibited by the nite group E(Fg). It turns out that E(F,) is either itself cyclic,
or isomorphic to a product of two cyclic group<Z,,, Z,, with n; j n, [ACD" 05,
Prop. 5.78]. In cryptography, we would like the groupE(F,) to be as cyclic
as possibleso we usually prefer the former case, or at the very least fag to
be very small. In most cases of practical interest, we can geate curves that
are cyclic with relative ease, so throughout this thesis itsito safe assume that
E(F,) is cyclic (but to see the real depth of this question in genal, we refer
to [MSO7]). The following example illustrates thatE(Fy) = hPi obeys all the

usual rules that apply to cyclic groups, and introduces themportant notion of
r-torsion.

Example 2.2.1 (Magma script) ConsiderE=Fyo; : y?> = x3+ x + 1. The group
orderis #E(Fy) =105=3 5 7, andP = (47;12) 2 E is a generator. Lagrange's
theorem says that points (and subgroups) over the base eldilvhave order
in f1;3;5;7;15, 21; 35 105. Indeed, to get a point of orderr j 105, we simply
multiply P by the appropriate cofactor, which ish = # E=r. For example, a point
of order 3 is [35](4712) = (28;8), a point of order 21 is [5](4712) = (55; 65),
and a point of order 1 is [105](4712) = O (which is the only such point). By

http://www.craigcostello.com.au/pairings/beginners/2-2-1-Torsion.txt

2.2. Torsion, endomorphisms and point counting 23

de nition, a point is \killed" (sent to O) when multiplied by its order. Any point
over the full closureE (Fy) that is killed by r is said to be in ther-torsion. So,
the point (55;65) above is in the 21-torsion, as is the point (28). There are
exactly 21 points inE(Fg) in the 21-torsion, but there are many more irE (Fy).

The whereabouts and structure of -torsion points in E(F,) (alluded to at
the end of ExampleZ.Z]1) plays a crucial role in pairing-bed cryptography; we
will be looking at this in close detail in Chapter 4.

In ECC we would like the group order #E (F,) to be as close to prime as pos-
sible. This is because the (asymptotic) complexity of the EQLP that attackers
face is dependent on the size of the largest prime subgroupBfF,). Even if
the particular instance of the discrete logarithm problem ses a generator of the
whole group, the attacker can use the known group order to sel smaller in-
stances in subgroups whose orders are pairwise prime, anéritreconstruct the
answer using the Chinese Remainder Theorem (CRT). We makeighclear in
the following two examples: the rst is a toy example, whilstthe second shows
the di erence between two curves of the same cryptographiéze; one that is
currently considered secure and one that is completely bietble using modern
attacks.

Example 2.2.2 (Magma script) Consider E=Fygy; : y? = x3 + 905x + 100, with

group order #E(Fq) = 966 = 2 3 7 23, and generatorP = (1006; 416).
Suppose we are presented with an instance of the ECDLP: namele are given
Q = (612;827), and we seek to ndk such that k]P = Q. For the sake of the
example, suppose our best \attack" is trivial: trying everymultiple [i]P of P

until we hit the correct one (= k). Rather than seekingi in the full group (2

i 965), we can map the instance into each prime order subgroup mmultiplying

by the appropriate cofactor, and then solve fok; k modj, | 2 f2;3;7;230.

Forj =2, we haveP; = P, = [966=2]P = [483](1006416) = (174;0), and Q; =

Q. =[483](612 827) = (174;0), soQ, =[ky]P, givesk, = 1. For | = 3, we have
Ps = [322]P = (147;933) and Q3 = [322]P = O, so Qs = [ks3]Ps givesks = 3.

Forj =7, we have P; = [138]P = (906;201) andQ; = [138]Q = (906; 201), so
Q7 = [k7]P7 givesk; = 1. For j = 23, we haveP,; = [42]P = (890;665) and
Q23 = [42]Q = (68;281). For Q.3 = [ky3]P23, we exhaustk,s 2 f 1;::;22g to see
that ko3 = 20. Now, we can use the Chinese Remainder Theorem to solve

k ky=1mod?2; k ks3=0mod3; k krs;=1mod7; k Kky3=20mod?23;

which givesk 687 mod #E, solving the ECDLP instance. Notice that the

http://www.craigcostello.com.au/pairings/beginners/2-2-2-ECDLP.txt

24 Chapter 2. Elliptic curves as cryptographic groups

hardest part was exhausting the setl;::;22g to nd ky3 = 20, so the largest
prime order subgroup becomes the bottleneck of the algorith giving intuition
as to why the largest prime order subgroup de nes the attackomnplexity when
groups of a cryptographic size are used.

Example2.2.3 (Magma script) For our real world example, we take the curve P-
256 from the NIST recommendations [NIS99], which currentlgichieves a similar
security level (resistance against best known attacks) tché 128-bit Advanced
Encryption Standard (AES) for symmetric encryption. The cuve is de ned as
E=Fq:y?=x3 3x+ b, with prime order r =# E, and generatorG = (Xg; Ys),
where

gq=1157920892103562487626974469494075735300861434B329 95533631308867097853951
r =115792089210356248762697446949407573529996955%52740342422259061068512044369
b=41058363725152142129326129780047268409114441072%8854835256314039467401291

Xg = 4843956129390645175905258525279791420276294952@(74AB5844080717082404635286
Yo = 361342509567497957985851279195878819566111066 A8 1877198253568414405109
Xn =5398760159702177843391054806498797323594551560@6B02948657055639179420355
yu =5369094926341044790882445600505525355323 7881490884 1737490561466076234637

We give another pointH = (xy;y4) to poseH = [k]G as an intractable in-
stance of the ECDLP; this 256-bit prime eld (and group ordey is far beyond the
reach of current attacks. For example, there is currently aaenpaign underway
to solve a discrete logarithm problem over a 130-bit eld usg a cluster of servers
that have already been running for two years (sd#tp://ecc-challenge.info/),
so (assuming the best known attacks stay exponential) it ses the above ECDLP
should be safe for a while yet. We remark that the prime chargaristic qis given
by q=22% 222442192429 1- such primes are preferred in ECC as they allow
for faster nite eld multiplication and reduction routine s, greatly enhancing the
speed off, arithmetic. We now give a curve over the same eld,, for which
the ECDLP is well within reach of the best known attacks. Namlg, consider the
alternative curve with b = 0, namely E=F, : y?> = x®> 3x, whose group order
n=# E is given as

http://www.craigcostello.com.au/pairings/beginners/2-2-3-NIST.txt
http://ecc-challenge.info/

2.2. Torsion, endomorphisms and point counting 25

n =1157920892103562487626974469494075735300861434B329 95533631308867097853952
=2% 7 274177 6728042131072111318308927973941931404914103

This time, the largest prime divisor of the group order is oyl 94 bits long,
and the complexity of solving the ECDLP inE(F,) is governed by the di culty
of solving the ECDLP instance in this largest prime subgroupwhich could be
done in a small amount of time on a desktop computer.

The above example provides clear motivation as to the impance of counting
points on elliptic curves. The largest prime factor of the grup order determines
the di culty that attackers face when trying to solve the ECD LP, so we would
like to be able to count points on curves quickly enough to ndhose whose
order is prime or almost prime (i.e. has a small cofactor), drave methods of
prescribing such a group order before searching for the carvFortunately, on
elliptic curves we have e cient algorithms to do both.

We start our brief discussion on elliptic curve point countig by referring
back to the two group orders in Examplé_2.2]3, and observindpat both group
orders share the rst half of their digits with those of the dd characteristic g.
This suggests that the number of points on an elliptic curvesiclose tog, which
is indeed the case in general; thelasse boundSil09, Ch. 5, Th. 1.1] says the
most that # E(Fy) can dier from q+ 1 is 2p q ie. j#E(Fy) (q+1)]j 2p g.
This o set between #E(F,) and (q+ 1) is called the trace of Frobenius and is
denoted byt, so

HE(F)=q+1 t iti g (2.6)

We will discuss wheret comes from and provide some more intuition behind
the above formula in a moment, but what the Hasse bound tellssuis that
the group order lies somewhere in the interva[+ 1 2pq;q+ 1+2 p(_]]. In
fact, Deuring [Deu4l] showed that wherg is primeq, then every valueN 2
[q+ 1 2p q;q+1+2 P q] can be found as a group order & (F,) for someE.

Example 2.2.4 (Magma script) Let q = 23, so that the Hasse interval becomes
[q+1 P q;q+1+2 P q] = [15; 33], meaning that there are exactly 19 di erent

2When qis a prime power, there are a very small number of explicitly @scribed exceptions.

http://www.craigcostello.com.au/pairings/beginners/2-2-4-Deuring.txt

26 Chapter 2. Elliptic curves as cryptographic groups

group orders taken by elliptic curves overF,;. For example, E=Fy3 : y? =
x3+18x + 3 has #E = 15, whilst E=F,3 : y> = x3+13x + 7 has # E = 33. We
give 19 @; b pairs such that the corresponding curveg :y? = x3+ ax+ bhave
group orders in ascending order spanning the whole interyals follows: (183),
(7:22), (1914), (17,17), (125), (7;12), (8,10), (17,18), (2G 20), (2 3), (20;3),
(6;8), (16;8), (16;22), (9;16), (19 6), (20;8), (22,9), (13;7).

A rough (but elementary and instinctive) argument as to why #£ qis that
approximately half of the valuesx 2 [0;::;;q 1] will give a quadratic residue
x3+ ax+ b2 QR(q), which gives rise to two points k; = x3+ ax+ b) 2 E(Fy),
the only exception(s) being wherx® + ax + b= 0 which obtains one point. The
sophisticated explanation requires a deeper knowledge thaur introduction
o ers, but for the purposes of this introductory text we get dmost all that we
need from Equation [Z.6); the derivation of which makes usef ¢the following
de nition. If E is de ned overFg, then the Frobenius endomorphism is de ned
as

"E! E; (x;y) 7' (x%y9): (2.7)

We note that the Frobenius endomorphism maps any point i (F) to a point in
E (Fq), but the set of points xed by is exactly the groupE(F,). Thus, only
acts non-trivially on points in E(Fg) n E(Fg), and more generally, ' : (X;y) 7!
(x%;y9) only acts non-trivially on points in E (Fg) nE(Fy).

Example2.2.5 (Magma script) Let =67, and considerE=F; : y? = x3+4x+3,
and let F = Fq(u) where u? + 1 = 0, and further let Fgs = Fq(v) where
v3+2=0. For P, =(15;50) 2 E(Fg), we have 4(P;) = (159;50%) = (15;50).
For P, = (2u + 16;30u + 39), we have 4(P2) = ((2u+16)9 (30u+39)9) =
(65u + 16;39 + 37u); it is easy to see in this example that computing 4(Q) for
any Q 2 E(Fg) involves a simple \complex conjugation” on each coordinat
which also agrees with 5(Q) = Q. Let P3 = (15v* +4v +8;44v + 30v + 21),

q(P3) = (33v2+14v+8;3v2+38v+21), 2(P3) = (19v2+49v+8; 20v2+66v+21),
and 3(Ps) = Ps.

We can now return to sketch the derivation of Equation[{Z16) ¥ skimming
over results that are presented in full in Silverman's bool§jil0g, Ch. V, Th. 1.1].
We now know that P 2 E(Fg) if and only if (P) = P (i.e. ([1])P = 0),
and thus #E(F,) = #ker([1]). It is not too hard to show that the map

http://www.craigcostello.com.au/pairings/beginners/2-2-5-Frobenius.txt

2.2. Torsion, endomorphisms and point counting 27

[1] is separable, which means that £ (Fg) = #ker([1]) = deg([1]).
We can then make use of (a special case of) a version of the GguSchwarz
inequality [SIIO9][Ch. V, Lemma 1.2], to givgdeg([1]) deg([1]) deg()j

2 deg([1])deg(), from which Equation (Z.8) follows from deg() = q.

The theory of elliptic curves makes constant use of thendomorphism ring
of E, denoted EndE), which (as the name suggests) is the ring of all maps
from E to itself; addition in the ring is natural, i.e. (1+ 2)(P)= 1(P)+

2(P), and multiplication in End(E) is composition (1 2)(P) = 1(2(P)).
The multiplication-by-m map [m] is trivially in End(E) for all m 2 Z, and when
E is de ned over a nite eld, then clearly is too, so we are usually interested
in any extra endomorphisms that shed more light on the behawir of E.

Example2.2.6 (Magma script) ConsiderE=F;:y? = x*+ b. The map , de ned
by :(x;y) 7' (sx;y)with 3=1and ;86 1,isa non-trivial endomorphism on
E,so 2 End(E). If 32 Fy then will be de ned over Fy, otherwise 3 2 Fg
in which case is not de ned overFg, but over Fp. We will observe both cases.
Firstly, cubic roots of unity will be de ned in Fq if and only if ¢ 1 mod 3, so
let us takeq 19, b= 5, which givesE=F9 : y> = x3+5. Let 3 =7 so that
3 = 1 (we could have also taken Z = 11), so that : (x;y) 7! (7x;y) is an
endomorphism onE. Applying this to, say P =(1;2), gives (P)=(7;2)2
E. Taking the same curve oveF,s, i.e. E=F,3 : y? = x3+5, forwhich P = (1;2)
is a again a point, we no longer have a non-trivial; 2 F,3, so we must form a
quadratic extensionFg(u), u?+1 = 0. Now, we can take 3 = 8u+11 (the other
optionis £ =15u+11),sothat (P)=((8u+11);2)=(15u+12;2)2 E(Fg).
Notice that P started in E (Fg), but landed in E(Fg) under . The endomorphism

has an inverse ! (which is de ned the same way but with 3 instead), so is
actually an automorphism ofE, written as 2 Aut(E).

The de nition of : (X;y) 7! (3X;y) in the above example gives an endomor-
phism onE : y? = x3 + bregardless of the eld thatE is de ned over. If there
exists a non-trivial map (like) for an elliptic curve E, we sayE has complex
multiplication. To be more precise, all elliptic curve endomorphism ringsiv-
ially contain Z, since everym 2 Z corresponds to the multiplication-bym map
[m] 2 End(E). However, if non-trivial endomorphisms exist that make Ed(E)
strictly larger than Z, then we sayE has complex multiplication (CM). Thus,
by this de nition, every elliptic curve de ned over F, has CM, because the exis-
tence of the Frobenius endomorphism 2 End(E) makes Endg) larger than Z.

http://www.craigcostello.com.au/pairings/beginners/2-2-6-Endo1.txt

28 Chapter 2. Elliptic curves as cryptographic groups

However, if we discuss whethee has CM without yet stipulating the underlying
nite eld, then the question becomes non-trivial in generd because the answer
depends on the existence of non-trivial maps. We use Silvaanms example to
illustrate [Sil09, Ch. 3, Eg. 4.4].

Example 2.2.7 (Magma script) Consider E=K : y?> = x® + ax. The map
(x;y) 7! (x;iy), wherei? = 1 in K is an endomorphism, scE has CM.
Clearly, will be de ned overK if and only if i 2 K. Observe that (xy) =

(xiy)=(x; y)= (x5y), so =[1] (i.e. 2?is equivalent to negation).
Thus, there is a ring homomorphisn¥[i]! End(E) de ned by m+ ni 7! [m]+
[n] . If Char(K) 6 0, then this map is an isomorphism, thus EndE) = Z]i],
and Aut(E) = Z][i] .

The trace of Frobeniust in Equation (Z.6) is named so because of the role it

plays in the characteristic polynomial satis ed by , which is given as

2 [t] +[d=0 inEnd(E); (2.8)
meaning that for all (x;y) 2 E(F,), we have

xCyF) Gy +[d(xy) = O: (2.9)

Example 2.2.8 (Magma script) We use our results from Examplé2.2.5 to illus-
trate, so as beforeE=Fg; : y? = x3+4x + 3, Fp = Fq(u) whereu? +1 = 0,
and Fg = Fq(v) where v +2 = 0. The trace of Frobenius ist = 11, so
#E(Fy) = g+1 t =79. For P, = (15;50) 2 E(Fg), we trivially had

2(P1) = (P1)= Py, s0Py [tIP1+[q]Py=([1] [t]+[d])P1 = [# E(Fg)IP. = O.
For P, = (2u+16; 30u+39), we had 2(P,) = P,and (P,) = (65u+16;37u+39),
so we are computindg®, [11] (P,)+[67]P, =[68](2u+16; 30u+39)+[11](65u+
16, 37u + 39), which is indeedO. P; 2 E(F4) is the only case where both and

2 act non-trivially, so we compute (192+49v+8;20v2+66v+21) [11](33/%+
14v + 8;3v? + 38v + 21) + [67](15Vv? + 4V + 8; 44v? + 30v + 21), which is O.

We now give a brief sketch of Schoof's algorithm for countingoints on el-
liptic curves [Sch85]. Understanding the algorithm is not g@rerequisite for un-
derstanding pairings, but it certainly warrants mention inany overview text on
elliptic curves in cryptography, since it is essentially te algorithm that made
ECC practical. Before Schoof's polynomial-time algorithmall algorithms for
point counting on elliptic curves were exponential and thefore cryptographi-

http://www.craigcostello.com.au/pairings/beginners/2-2-7-AutoRing.txt
http://www.craigcostello.com.au/pairings/beginners/2-2-8-CharFrob.txt

2.2. Torsion, endomorphisms and point counting 29

cally impractical. Besides, to sketch his idea, we need totinduce the notion
of division polynomials which are a useful tool in general. Put simply, division
polynomials are polynomials whose roots reveal torsion ps: namely, for od

°, the "-th division polynomial -(x) on E solves to give thex-coordinates of
the points of order’. They are de ned recursively and depend on the curve con-
stants a and b, but rather than giving the recursions here, we point the reder
to [Sil09, Ch. lll, Exer. 3.7], and opt instead for an exampléhat illustrates
their usefulness.

Example 2.2.9 (Magma script) Recall the curveE=Fyp; : y? = x3 + x + 1 from
Example[Z.2.1 with group order #E(Fy) = 105=3 5 7. The x-coordinates of
the points of order 2 are found as the roots of,(x) = 4x3 + 4x + 4, which is
irreducible in F4[Xx], so there are no 2-torsion points i (Fg). Forr =3, 3(X) =
3x4+6x2+12x+100 2 Fy[x] factors into 3(x) = (X +73)(x +84)(x?+45x +36),
so we get two solutions ovelFy, namely x = 17 and x = 28. This does not
mean that the points implied by both solutions are inF4: namely, x = 28 gives
x3+ x+1 2 QR(0), so two points in the 3-torsion follow as (288) and (28 93).
Conversely,x = 17 givesx3+ x +1 62QR(q), so the two points implied byx = 17
will be de ned over Fg.. For s(x) = 5x*?+ 11+ 16, the factorisation in Fq[X]
is 5(X) = (x+15)(x +55)(x>+ i+ 1)(x®+ 1+ 100), which givesx = 46 and
X = 86 as solutions. This time, bothx values give rise to two points, giving four
non-trivial 5-torsion points in total: (46;25), (46 76), (86 34), (86 67). 7(x)
is degree 24, and gives three linear factors Hy[x], all of which result in two
7-torsion points, giving 6 non-trivial torsion points in taal: (72;5), (72 96),
(57;57), (57,44), (3,43), (3;58). Other division polynomials have roots inF,
but these roots will not give rise to points de ned over,. For example, 11(X)
has 5 roots overF (13, 18, 19, 22, 63), but none of them give points i& (F),
meaning we will have to extend toE (Fg) to collect any 11-torsion points. The
only division polynomials whose roots produce points de meover F, are the
4(x) with dj 105. This generalises to imply that the only division polynmials
whose roots produce points de ned oveffy are ¢(x), whered j # E(Fq).

We are now in a position to shed light on Schoof's algorithm. duation
(2.6) means that computingE (F,) immediately reduces to computing the (much
smaller) trace of Frobeniust. At the highest level, Schoof's idea is to compute

3When " is even, the division polynomial is of the form -(x;y) =y ~(x) sincey = 0 gives
points of order two, which are in the "-torsion.

http://www.craigcostello.com.au/pairings/beginners/2-2-9-DivisionPoly.txt

30 Chapter 2. Elliptic curves as cryptographic groups

t- tmod for enough co-prime''s to be able to uniquely determinet within
the interval ZpG t ZpG via the Chinese Remainder Theorem. Namely,
when "~ .t 4p g, then we have enough relations to determine the corrett
To compute t- for various primes’, Schoof looked to consider Equation {2.9)
\modulo ™", restricting the points (X;y) to come from the "-torsion, and trying

to solve

xFyF) 1Sy +[alxy) = O; (2.10)

for t-, whereq gmod . The problem for general is, that since we do not
know the group order, we cannot explicitly use-torsion points in (Z10), nor
do we know if they are even de ned oveF,, or where theyare de ned, so we
have to work with (Z.10) implicitly. Namely, we restrict (2.10) to the "-torsion by
working modulo -(x): we do not work with Equation (Z.10) onE (F,), but rather
in the polynomial ring R- = Fyx;y]=h -(x);y? (x3+ ax+ b)i, where the size
of the polynomialsf (x;y) we deal with in R- are bounded by the degrees of the
division polynomials -(x). Even for very large prime eldsF, of cryptographic
size, the number of di erent primes used is small enough to &p this algorithm
very practical. For example, nding the group order of the cave de ned over a
256-bit prime g in Example[Z.Z.3 would require solvind(2.10) for the 27 pries up
to ~ =107, at which point the product of all the primes used exceadd’ g ltis
not too di cult to deduce that the asymptotic complexity of S choof's algorithm
is O ((log 0)®) (see [Sil09, Ch. XI1.3] for details, and further improvemen).
Example 2.2.10 (Magma script) Consider E=F3 : y2 = x3+ 2x + 1; we seek
E(F13). Schoof's algorithm actually begins with® = 3 [Sil09, Ch. XI.3];
so since 14< 4 13 < 15, we only need to solve[{Z10) with = 3 and ~ =

5. For® =3, 3(X) =3x*+12x?>+ 12x +9, so we work in the ring R; =
Folx; y]=Bx4 + 12x% + 12x + 9;y% (x3 +2x +1)i with ¢ = 1, to nd that
t3 =0. For ° =5, 5(x) =5x¥+ ::+6x+7, sowe work in the ringRs =

Folx; y]=bx2+ i+ 6x+7;y% (x3+2x+1)i with ¢ =3to nd that ts=1. For
both cases we had to computey[](x;y) in R- using the a ne formulas (2.4) and
(2.5), compute &% y%) and (qu;yqz) in R+, and then test incremental values of
t- until [t-](x%; y?9) (also computed with the a ne formulas) satis es (Z.10). The
CRT with t Omod3 andt 1mod5 givest 6 mod 15, which combined
with 7 t 7meanst=6,giving#E =qg+1 t=8.

We nish this chapter by brie y discussing one more improverant to ECC

http://www.craigcostello.com.au/pairings/beginners/2-2-10-SchoofSmall.txt

2.3. Chapter summary 31

that will essentially bring the reader up to speed with majomilestones that
contribute to the current state-of-the-art implementations. The technique was
introduced by Gallant, Lambert and Vanstone (GLV) [GLV01], and recently

generalised by Galbraith, Lin and Scott (GLS)[[GLS11]. It egloits the existence
of an e ciently computable endomorphism that allows us to instantly move

P to a large multiple (P) =[]P of itself, so that (in the simplest case) the
scalar multiplication [m]P can be split into [m]P =[mg]P +[m] (P), where if

jmj r (the large subgroup order), thenmgj, jmyj pF. The valuesmg and

m, are found by solving a closest vector problem in a latticeé [M01], x4]. We

apply an example from the GLV paper (which was itself taken éim Cohen's book
[Coh96, x7.2.3]) that is actually exploiting a special case of the endhorphism

we described in Examplé€_Z2.27.

Example2.2.11 (Magma script) Let g 1 mod 4 be prime E=F, : y? = x3+ ax,
and leti? = 1. The map dened by : (x;y) 7! (x;iy)and : O 7!
O is an endomorphism de ned overFq (= from [Z2Z7). LetP 2 E(Fy)
have prime orderr, then (Q) =[]Q for all Q 2 hPi, and s the integer
satisfying 2 = 1 modr. We give a specic example:q = 1048589, E=F :
y?2 = x3+ 2x with # E = 2r, wherer = 524053; we further havei = 38993,
and = 304425. P = (609782 274272)2 E hasjhPij = r, so we can take any
element inhPi, say Q = (447259 319154), and compute (Q) = (447259i
319154) = (601330117670) = [304425](4472%3819154) = []Q. Computing a
random multiple of Q, say m]Q with m = 103803, can be done by decomposing
m into (in this case) (mg; m;) = (509;262), and instead computing h]Q =
[Mo]Q+[mM1] (Q). Herem is 17 bits, whilstmg and m; are both 9 bits. Doing the
scalar multiples ng]Q and [m;] (Q) separately would therefore give no savings,
but where the GLV/GLS methods gain a substantial speed-up i merging the
doublings required in both of the multiplications by the \mini-scalars”, which
halves the number of doublings required overall; again, s§@8LV01,/GLS11] for
futher details.

2.3 Chapter summary

We de ned the elliptic curve group law via the chord-and-tangent method,
and discussed that elliptic curve groups are an attractiveetting for discrete-log
based cryptosystems because of the relative security olstad for the sizes of the

http://www.craigcostello.com.au/pairings/beginners/2-2-11-GLV:GLS.txt

32 Chapter 2. Elliptic curves as cryptographic groups

elds they are de ned over. We also exempli ed many improverants in the con-
text of cryptographic implementations, where the fundameal operation (that
creates ECDLP instances) is computing large scalar multipé m]P of P 2 E.
Namely, we showed that group law computations in nite eldscan be much
faster in projective coordinates, i.e. computingXi : Y1 : Z1) (X2 :Ya2:2Z)
rather than (xi;y1) (X2;Y2), and that other (non-Weierstrass) curve models
also o er advantages. We gave an explicit equation for the mober of points
in E(Fg), and brie y discussed Schoof's polynomial-time algoritm that facil-
itates point counting on curves of cryptographic size. We sb introduced the
notion of the endomorphism ring EndE) of E, and nished by showing that
non-trivial elements of EndE) can be used to further accelerate ECC. A reader
that is comfortable with the exposition in this chapter is egipped with many
of the tools required to tackle the vast literature in this €d, and is some-
what up-to-date with the state-of-the-art ECC implementaions. For example,
in the context of chasing ECC speed records, some authors baapplied alter-
native projective coordinate systems to the Edwards modebtgive very fast
scalar multiplications [HWCDO§], whilst others have invetigated higher dimen-
sion GLV/GLS techniques (ExampldZ.2. 71 above was 2-dimeosal) to gain big
speed-ups [HLX1R]; visithttp://bench.cr.yp.to/supercop.html for compre-
hensive and up-to-date benchmarkings of a wide number of itementations that
are pushing ECC primitives to the limit.

Relaxed notation. Our last order of business before proceeding into the next
chapter is to relax some notation in order to agree with the gt of the literature.
Rather than writing \ " for the elliptic curve group law, from hereon we simply
use \+". Similarly, for the inverse of the point P, we use P instead of P.

http://bench.cr.yp.to/supercop.html

Chapter 3

Divisors

In this chapter we introduce some basic language and de niths from algebraic
geometry that are fundamental to the understanding of crymigraphic pairing
computations. We continue with our example-driven approdc and illustrate
each concept and de nition as it arises. We will essentialljist be expanding on
the more concise section found in Galbraith's chapter [Ga0xIX.2]. However,
we only focus on what we need to describe elliptic curve paigs, so we refer
any reader seeking a more general and thorough treatment toa(Braith's new
book [Gall2, Ch.7-9]. Since our exposition targets the newvoer, we begin by
assuring such a reader that their persistence through the déions and examples
will be amply rewarded. On becoming comfortable with the laguage of divisors,
one can immediately start to appreciate how pieces of the \pangs puzzle" t
together very naturally, and might even enjoy feeling intuion behind important
theorems that would otherwise appear foreign.

The following statements apply to all curvesC over any perfect eld K and
its closure K (see [Sil09, p. 17, p. 1] for the respective de nitions). Haver,
for now we place the discussion in our context and specialisethe case where
C is an elliptic curve E over a nite eld K = F4. Later in this chapter we
will expand to more general examples and statements in time tpresent the
important theorems in their full generality. A divisor D on E is a convenient

33

34 Chapter 3. Divisors

way to denote a multi-set of points onE, written as the formal sum

X
D = ne(P);

P2E(Fq)

where all but nitely many np 2 Z are zero. The standard parentheses)(
around the P's and the absence of square parenthesek dround the np's is
what di erentiates the formal sum in a divisor from an actualsum of points (i.e.
using the group law) onE. The set of all divisors onE is denoted by Divﬁq(E)

and forms a group, where addition of divisors is natural, anthe identity is the

divisor with all np = 0, the zero divisor 02 Divﬁq(E). The degreeof a divisor
D is DegD) = P2E(Fy) NP> and the support of D, denoted suppD), is the set
supp(D) = fP 2 E(Fg) : np 600.

Example 3.0.1 (Magma script) Let P; Q;R;S 2 E(F,). Let D; =2(P) 3(Q),

and D, = 3(Q) +(R) (9), so that Deg(D;) =2 3= 1, and DegD,) =

3+1 1=3. ThesumD;+ D, =2(P)+(R) (S), and naturally Deg(D;+ D;) =

Deg(D,) + Deg(D,) = 2. The supports are suppD,) = fP;Qg, suppD,) =

fQ;R;Sg, and suppD; + D,) = fP;R; Sg.

Associating divisors with a functionf on E is a convenient way to write down
the intersection points (and their multiplicities) of f and E. Let ordp (f) count
the multiplicity of f at P, which is positive iff has a zero atP, and negative if
f has a pole atP. We write the divisor of a functionf as (), and it is de ned
as the divisor

X
(f)= orde (f)(P):

P2E(Fqg)

Example 3.0.2 (Magma script) We have already seen examples of functions on
E in the previous section, namely the lines : y = x + used in the chord-
and-tangent rule, and it is natural that we are really only iterested in the
points of intersection of and E, which is exactly what the divisor () tells
us. The chord " in Figure [3.1 intersectsE in P, Q and (P + Q), all with
multiplicity 1, and (as we will discuss further in a moment)™ also intersectsE
with multiplicity 3 at O, i.e. ~ has a pole of order 3 aD. Thus, ~ has divisor
O)=(P)+(Q)+((P+ Q) 3(0O). The tangent " in Figure[3.2 intersectsE
with multiplicity 2 at P, with multiplicity 1 at [2]P, and again with multiplicity
3atO,sointhiscase) =2(P)+([2]P) 3(O). Notice that in both cases

http://www.craigcostello.com.au/pairings/beginners/3-0-1-DivisorSuppSum.txt
http://www.craigcostello.com.au/pairings/beginners/3-0-2-DivChordTangent.txt

35

(P+Q)
[2P

Figure 3.1: () = (P)+(Q)+((P+ Figure 3.2:(")=2(P)+([2]P) 3(0).
Q) 3(0).

we have Deg ({)) = 0.

The balance that occurred between the zeros and poles in Exple[3.0.2 that
led to Deg((')) = 0 is not a coincidence. In fact, a fundamental result thaties at
the heart of the discussion is that this always happens: namgefor any function
f on E, we always have Degf()) = 0. An instructive proof of this result is in
Galbraith's book [Gall12, Th. 7.7.1], but roughly speakinghis property follows
from observing that the degree of the a ne equation that soles for the zeros
of f on E matches the degree of the projective equation that determas the
multiplicity of the pole of f at O, i.e. the projective version off is g=hwhereg
and h both have the same degree ds We revisit Example[3.0.2 and illustrate
in this special case.

Example3.0.3 (Magma script) We already know that three zeros (counting mul-
tiplicities) will always arise from substituting * : y = x + into E=F;:y? =
x3+ ax + b, but we have only considered on the ane curve E\ A?, where"
has no poles. To consider on E at O = (0: 1:0) (in P?(F,)), we need to take
X = X=Z andy = Y=Z which gives #%-%)% = (£)3+ a(%) + b, for which we
clearly have a pole of order 3 whe# = 0.

The algebra between functions naturally translates acroge the algebra be-
tween their divisors, so{g) = (f)+(g) and (f=g) = (f) (g), (f) =0 if and
only if f is constant, and thus if {) = (g), then (f=g) = 0 so f is a constant
multiple of g, which means that the divisor) determinesf up to non-zero
scalar multiples.

Example3.0.4 (Magma script) Let " :y = 1x+ ; be the chord (throughP and

http://www.craigcostello.com.au/pairings/beginners/3-0-3-ProjDivs.txt
http://www.craigcostello.com.au/pairings/beginners/3-0-4-DivQuotient.txt

36 Chapter 3. Divisors

Q) with divisor (") =(P)+(Q)+((P+Q)) 3(0),andlet %:y= ,x+
be the tangent atR with divisor ("9 = 2(R)+([2]JR) 3(O). The divisor of

P+Q

Figure 3.3: Two functions * and “%on E.

the function “pog = T %is Cproa) = () + (C) = (P)+(Q)+2(R)+((P +

Q) +([2IR) 6(0). The divisor of "quot = =°is (quat) = () (9 =
P)+(Q)+((P+Q) 2(R) ([2]R). Notice that "o, does not intersect
E at O; projectifying "="0= J—272 gives y—%—Z, which does not give rise

to any zeros or poles aZ = 0. Suppose we wanted to depict the function™°
on E, and we multiplied out (y 1x 1)(y 22X), substituted the y? for
X3+ ax + band wrote y = e v (2 2) -y does not make sense to

try and depict this function since all the pictures we have wed for illustrative

purposes also show how the functions (o) behave at points that are not on
E, where the substitutiony? = x3 + ax + bis not permitted.

3.1 The divisor class group

We can now start introducing important subgroups of the grop of divisors
Dive (E) on E. We temporarily drop the subscript, and write Div([E) as the
group of all divisors onE. The set of degree zero divisor§D 2 Div(E) :
Deg(D) = 0g forms a proper subgroup, which we write as DNE) Div(E).
If a divisor D on E is equal to the divisor of a function, i.e. D = (f), then
D is called aprincipal divisor, and the set of principal divisors naturally form
a group, written as Prin(E). We already know (from Example[3.0.3 and the
preceding discussion) that principal divisors have degreero, but there are also
degree zero divisors that are not the divisors of a functiorso the degree zero
subgroup is strictly larger than the principal divisors, ie. Prin(E) Div°(E).

3.1. The divisor class group 37

There is, however, an extra condition on elements of CAE) that doesallow us
to write an \if-and-only-if: D =, np(P) 2 Div°(E) is principal if and only
if 5[np]P = O onE [Gal03, Th. IX.2]. We illustrate this statement, and the
relationship between the three groups

Prin(E) Div°(E) Div(E) (3.1)

in Example[3.1.1.

Example 3.1.1 (Magma script) Consider E=Fp3 : y?> = x3 + 20x + 20, with
points P = (26;20), Q = (63;78), R = (59;95), S = (24;25), T = (77;84),
U =(30;99) all onE. The divisor (S)+(T) (P) 2 Div(E) is clearly not in
the subgroup DIV(E), since it has degree 1; there are also in nitely many other
trivial examples. The divisor P)+(Q) (R) (S) is in Div®(E), but is not
principal sinceP + Q R S =(18;49)6 O on E. Thus, a function f with
f)=(P)+(Q) (R) (S) does not exist. On the other hand, the divisor
(P)+(Q) (R) (T)is principal, sinceitisdegree0Oan®+Q R T = 0Oon
E. Thus, there is some functiorf onE suchthat (f)=(P)+(Q) (R) (T);
itis f = % The sumR+ T onE is actually U, thusP+Q U= 0O
on E, but this time there is no function with divisor (P) +(Q) (U) because
the degree of this divisor is not zero; however, we can keepeteum onE asO
but manipulate the degree by instead taking the divisorB)+(Q) (U) (O),
which must be in Prin(C), guaranteeing the existence of a functiog with (g) =
(P)+(Q) (U) (O), namelyg= ¥****82 QOpserve the di erence betweer and

X+73

i i i — BYZ+71X2+91XZ +9172 — Y+4X+82Z7
g in projective space, wherd = >~ 2v="27-7 and g = 75— For f,

the point at innity O = (0: 1: 0) zeros both the numerator and denominator,

giving a zero and a pole which cancels out its contribution t¢f), whilst for g,
the point at in nity only zeros the denominator, which is why O 2 supp((Q)),
whereasO 62supp((f)).

Returning to the subscript notation for a moment, the three sbgroups (and
other related groups) in Equation [[3.11) are often accompaad by the eld they
apply to, e.g. for a general eldK, they are written as Pring (E), Divy (E),
and Divg (E). Here Divx (E) Div(E) is formally de ned as the set of divisors
invariant under the action of Gal(K=K), where 2 Gal(K=K) acts onD =

»Np(P) to give D = o Np((P)), so that D 2 Divk(E) if D = D .
This is very natural in the contexts we consider, so we will etinue on without
subscripts.

http://www.craigcostello.com.au/pairings/beginners/3-1-1-Principal.txt

38 Chapter 3. Divisors

Before we de ne thedivisor class groupof E, we look at the important notion
of divisor equivalence in DivE). We call the divisors D; and D, equivalent
written as D; Dy, if D; = D, + (f) for some functionf .

Example 3.1.2 (Magma script) Consider P = (57;24), Q = (25;37), R
(17;32) and S = (42;35) on E=Fg; : y> = x3+ 8x + 1. The divisors D,
(P)+(Q)+(R) and D, = 4(0) (S) are equivalent as follows. The function
f .y =33x2+10x + 24, which intersectsE at P, Q, R and S with multiplicity
1, and therefore has a pole of order 4 at in nity, has divisorf() = (P)+(Q) +
(R)+(S) 4(0), meaningD,; = D,+(f),soD; D,. Alternatively, if we did
not wantto nd f, we could have usedd; D, =(P)+(Q)+(R)+(S) 4(0O),
which has degree zero, and computed th& + Q+ R+ S [4]0 = O onE,
which meansD; D, 2 Prin(E), sothat D; D, =(f) for some functionf .

The divisor class groupor Picard group, of E is de ned as the quotient group

Pic’(E) = Div °(E)=Prin(E); (3.2)

i.e. the divisor class group is the group of all degree zeroridiors modulo the
principal divisors onE. At rst read, this notion of equivalence (modulo divisors
of functions) may seem a little abstract, but once we see it iaaction (particularly
in more general scenarios than elliptic curves), it becomssry natural. We will
rst use this notion to describe the elliptic curve group lawin terms of divisors,
following along the lines of Galbraith [[GalO5xIX.2].

Example3.1.3 (Magma script) Referring back to Figurd 2.5 (or Figuré_2l6 in the
case thatQ = P), the line * joining P and Q has divisor () = (P)+(Q)+(R)
3(0), whilst the vertical line v=x xg has divisor {) =(R)+(R) 2(0).
The quotient - has divisor) = (P)+(Q) (R) (O). Thus, the equation
R = P + Q onE is the same as the divisor equalityR) (O)=(P) (O)+
(Q) (0) (5), and the map of points to divisor classe® 7! (P) (O)is a
group homomorphism. To concretely connect this back to Eqtian (B.2)), both
(R) (O)and (P)+(Q) 2(O) are clearly in DiV°(E), but they represent the
same class in PR(E), because the divisor g) =(P)+(Q) (R) (O) (which
is their di erence) is principal, and therefore zero in Pi&(E).

http://www.craigcostello.com.au/pairings/beginners/3-1-2-ClassGroup.txt
http://www.craigcostello.com.au/pairings/beginners/3-1-3-DivLines.txt

3.2. A consequence of the Riemann-Roch Theorem 39

3.2 A consequence of the Riemann-Roch The-
orem

The notion of equivalence allows us teeducedivisors of any sizeD 2 Pic’(E)
into much smaller divisors. We will make this statement prase after an example,
but we must rst de ne what we mean by \size". A divisor D = _np(P) is
called e ective if np 0 for all P 2 E. The only divisor in Div’(E) that is
e ective is the zero divisor. Thus, we de ne thee ective part of a divisor D as
(D)= pnp(P), wherenp 0. For example, the divisoD = (P)+(Q) 2(O)
IS not e ective, but the e ective partis (D) =(P)+ (Q). By the sizeof D, we
mean the degree of the e ective part, so in our example, altbgh DegD) = 0,
it is size 2, since Deg(D)) = 2.

Example3.2.1 (Magma script) Consider the divisorD = (P;)+ :::+(P11) 11(0)
(with Deg((D)) = 11) as an element of Pi€(E) on E=Fq:y?= x3+ ax+ b,
where the P; are not necessarily distinct. To nd a divisor that is equivdent
to D, we can construct function 1o : y = a;ox® + 1+ a;x + ag to interpolate
the distinct points in supp(D) with appropriate multiplicities. Substituting 19
into E gives a degree 20 polynomial ir, the roots of which reveals the 20 a ne
points of intersection (counting multiplicities) between ;o and E. We already
know 11 of these points (theP;'s), so let P?, :::P$ be the other 9. An important
point to I:pote is thalt:)these points are not necessarily de nedver F,. Since
()= L)+ 2 (PY 200) 2 Prin(E), D°= (L, (PY 9(0))
is a divisor equivalent toD in Pic°(E), i.e. D° D. We can repeat this
process, interpolating the points in supd?9 with a degree 8 polynomial’sg :
y = adx® + ::+ ax + aJ, which will intersect E (in the a ne sense) 16 times,
giving 7 new intersection points, thereby nding a divisoD®= ' (P% 7(0)
equivalent to D® meaningD® D. It is easy to infer that the number of new
roots (maximum number of divisors in the consecutive suppi®) decreases each
time by two, so that in two more steps we will arrive atD = (Py)+(P2) +(P3)
3(0). We can interpolate the three points in supplD) with a quadratic function
iy = X2 + X + gy that clearly intersects E at one more a ne point, say Q.
That is, (7) = (P)+(Py) +(P3)+(Q) 4(0), and since () 2 Prin(E), then
(D) (0O) (Q). Lastly, the vertical line v has divisor (§ =(Q)+(R) 2(0),
meaning ©O) (Q) (R) (O), which gives O) (R) (O). To summarise,
we started with a divisorD = (P,) + :::(Py;) 11(0) which had size 11, and

http://www.craigcostello.com.au/pairings/beginners/3-2-1-Reduction.txt

40 Chapter 3. Divisors

Figure 3.4: ReducingD to (R) (O) in Pic®(E).

reduced to the equivalent divisor R) (O) D in Pic®(E) which has size 1.

The above example illustrates a key consequence of one of thest central
theorems in our study: theRiemann-Rochtheorem. To present the theorem in its
generality requires a few more de nitions than we need for o@xposition, so for
the full story we refer the reader to any of [Ful08x8], [Sil09,xI1.5], [Gal12, x8.7].
The important corollary we use is the following: for any cure C, there is a unique
minimal integer g, called the genusof C, such that any divisor D 2 Pic®(C) is
equivalent to a divisor D°with Deg((D9) g. Elliptic curves E are curves of
genusg = 1, meaning that every D 2 Pic°(E) can be written as P1) (Qi);
this is why we were able taeducethe divisor in Example[3.221 to R) (O).

We will only be dealing with elliptic curves in this text, sirnce they have proved
most successful in the context of pairings, but for now it aglone's understanding
to see where elliptic curves t in a slightly broader context Assuming an odd
characteristic eld, a general (\imaginary quadratic") hyperelliptic curve of genus
g is a generalisation of an elliptic curve, which can be writteas

Cy:y?= X2 4+ fxB + i+ fox + fy (3.3)
Each divisorD 2 PicO(Cg) has a uniquereducedrepresentative of the form
(P1) +(P2) + x4+ (Pn) n(O);

wheren g,P; 6 P, forallié j,andnoP; satisfyingP; = P; appears more
than once [BBC 09, x2.3]. The following examples illustrate this in the case of

3.2. A consequence of the Riemann-Roch Theorem 41

genus 2 and genus 3 respectively.

Example 3.2.2 (Magma script) A general (odd characteristic eld) hyperelliptic
curve of genugy = 2 is given (via Equation (3.3)) asC, : y2 = x>+ f x4+ i+ f;
we give a typical depiction in Figure_3.b. Suppose we have avidior D = (P;) +
(P,) + (P3) +(Ps) 4(0) 2 Pic’(C,), the a ne support of which is depicted in
red.

- . P, P,
Figure 3.5: ReducingD = _,((P;) (O))to D°= . ((PY (O)) D.

The Riemann-Roch theorem guarantees a (unique) equivaledivisor of the
form (P) + (P) 2(0). We nd it by constructing the cubic function °
y = agx® + 1 + 3 that has 4 zeros corresponding to the e ective part oD,
and therefore 4 poles aD. Substitution of * into E reveals two more points of
intersection, P; and Py, meaning () = (Py)+(Po)+(P3)+(P4)+(P1)+(P2) 6(0).
Since () 2 Prin(C,), thenD = D () in Pic®(C,) meaningD 2(0) (P,)
(P2). As usual, we reverse the ordering (so the e ective part is@e) by making
use of the vertical linesv; and v, with divisors (vi) = (Py) + (P 2(0) and
(v2) = (P2)+(P3) 2(0), towrite 2(0) (P1) (P2)=2(0) (P1) (P2)+
(Vi) + (Vo) = (PY+(P) 2(0) = DY meaningD D% We have reduced a
divisor D with Deg((D)) = 4 to a divisor D°with Deg((D9) =2 g. Note
that the points in the support of D° are not necessarily de ned ovef,. Also
note that trying to reduce D any further, say by running a line’®:y = x +
through P2 and P2, will not work in general, since this line will intersectE in 3
more places, creating an unreduced divisd@ ®with Deg((D%) =3 >g.

Example 3.2.3 (Magma script) Consider a general genus 3 hyperelliptic curve
Cs:y?2=x"+ fgx8+ i + fy; a typical depiction is given in Figure[3.B, with a

http://www.craigcostello.com.au/pairings/beginners/3-2-2-Genus2.txt
http://www.craigcostello.com.au/pairings/beginners/3-2-3-Genus3.txt

42 Chapter 3. Divisors

P
vertically magni ed Figure version in[3.7. Consider the diisor D = ?:1 ((Py)
(0)) 2 Pic®(Cs), the a ne support of which is the red points in Figure [3.8.

P1

Figurlg 3.6: The rst stage of reducing Figure 3.7: The second (and nal)
D= i6=1 ((P) (0)). stage of divisor reduction.

We reduceD by determining the other points of intersection between the
quintic interpolator * :y = asx®+ + ap and Cz, of which th%re are 4:Pq; 5Py
depicted in green orCs. (*) = 0 in the divisor class group so .6:1 (P)) (O)+

*.((P) (O)) =0, but the degree of the e ective part of ' ((P;) (O))
is still larger than g, so obtaining the unique reduced divisor requires further
reduction. Namely, the cubic function™ : y = asx3 + i + a, (depicted in
green) interpolates the four green points and (when subatited intg Cs) clearly
interselgts Cs in another 3 a ne points, depicted in blue. Thus, i4=1 ((Py)
O)+ 3, ((PY (O))=0,whichmeansthatD D°= > ((P9 (O))inthe
divisor class group, andD?is the unique representative oD since Deg((D9) =
3 0

As mentioned prior to these higher genus examples, the readis text will
only be discussing (genus 1) elliptic curves is because irethrena of pairing-
based cryptography, the raw speed of elliptic curves is cemtly unrivalled by
their higher genus counterparts, and all of the state-of-#irart implementations
take place in the genus 1 setting.

The elliptic curve group law enjoys a (relatively speakingyery simple, almost
entirely elementary description, the only exception beinghe introduction of

3.2. A consequence of the Riemann-Roch Theorem 43

projective space for the formal de nition ofO. Namely, we were able to describe
the chord-and-tangent rule without the language of divis@ or the de nition of
the divisor class group, which is not the case for other curser general abelian
varieties. This is because of the one-to-one corresponderetween the divisor
class group Pi€(E) and the points onE we brie y mentioned in Example[3.13,
i.e. the group homomorphismP 7! (P) (O) (see [SII09, 111.3.4] [Gal1?2, Th.
7.9.8, Th. 7.9.9]). Thus, in the elliptic curve setting, we @an simply talk about
the group elements being points, rather than divisors. In gher genera this does
not happen; group elements are no longer points, but ratherwisor classes in
Pic’(E) with multiple elements in their support.

Nevertheless, as we will see in the coming chapters, the laage of divi-
sors is absolutely essential in the description of ellipticurve pairings, where the
objective is to compute very large (degree) functions o with prescribed divi-
sors, and then evaluate these functions at other divis&sEvaluating a function

f 2 Fq(E) atadivisor D = ,,c np(P) has a natural de nition, provided the
divisors (f) and D have disjoint supports:
Y
f(D) = f(P)": (3.4)
P2E

The stipulation of disjoint supports is clearly necessarnof f (D) to be non-trivial,
sinceP 2 supp((f)) implies P is a zero or pole of on E, meaningf (P)"® would
be either zero or in nity respectively.

Example 3.2.4 (Magma script) Consider E=Fg3 : y?> = x3 x 2, with P =
(43;154), Q = (46;38), R = (12;35) and S = (5;66) all on E. Let p.g, p:p
and "q.o be the lines joiningP and Q, tangent to P, and tangent to Q on E
respectively, computed asp.q : y+93x+85, 'p.p 1 y+127x+90, .o : y+13x+16.
Let D; =2(R)+(S), D, =3(R) 3(S)and D3z =(R)+(S) 2(0). We can
compute “p.o(D1) = (Yr + 93Xgr + 85)2(ys + 93xs + 85) = 122, or “pp(Dy) =
(Yr + 127xg + 90)3=(ys + 127xs + 90)3 = 53, but we can not evaluate any of
these functions atD3, since O 2 supp(D3), and O is also in the supports of
(p) Cep), (o) Let "Bp =17 pp so that "R, = 17y +40x + 63, and that
8.5 (D2) = (17yr + 40xg + 63)3=(17ys + 40xs + 63)° = 53 = “p,p(D,). This is
true in general, i.e. that ifg = cf for some constantc 2 F,, then f (D) = g(D)

1we will also see that we do not actually compute these very lage functions explicitly before
evaluating them.

http://www.craigcostello.com.au/pairings/beginners/3-2-4-FunctionDivisor.txt

44 Chapter 3. Divisors

if D has degree zero; the constamtwill cancel out because DedX) = 0 implies
the numerator and denominator off (D) (identically g(D)) have the same total
degree.

3.3 Weil reciprocity

We conclude our chapter on divisors (as Galbraith does [G&IX.2, Th. 1X.3],
where he also gives a proof) with a central theorem that lies the heart of many
of the proofs of cryptographic pairing properties.

Theorem 3.1 (Well reciprocity). Let f and g be non-zero functions on a curve
such that(f) and (g) have disjoint supports. Therf ((g)) = g((f)).

Most of the functions onE that we have seen so far contai@® in their support.
In the rst example (B:3.1) we will choose one of the functiaggsuch that this is
not the case, meaning that Theorem 31 can be applied instaytwhilst in the
second example we will show how to alleviate this problem what arises by
modifying either of the functions.

Example3.3.1 (Magma script) Let E=Fso3 : y2 = x3+1. Consider the functions
f: m% =0and g:y+251x%+129x + 201 = 0 on E. The divisor of f
is (f) =2(433;98) + (232;113) (432 27) 2(127258), and the divisor ofg is
(9) = (413;369) + (339,199) + (147,443) + (124,42) 4(0). The supports are
clearly disjoint, so we rst computef ((g)) as

20 369+9 413+179 20 199+9 339+179 20 443+9 147+179 20 42+9 124+179
199 369+187 413+359 199 199+187 339+359 199 443+187 147+359 199 42+187 124+359

=321:

20 149 0+179 O
199 1+187 0+359 0

H H : H . 20Y+9X +179Z
Notice that f was cast into projective space ab : ;55 157y 13597 10F the evalu-

ation at O =(0: 1:0) on the denominator. Now, forg((f)) we have

98 +251 43F+129 433+201° 113+251 232 +129 232 +201

(258 + 251 1272 +129 127 +201F (27 +251 432 +129 432+201)

Example 3.3.2 (Magma script) Let P;Q;R;S;T;U2 E, such that T = (R +
S). Further let "%y =(%+ 9 be the tangenttoE atP and :y=(x +)
be the line betweenR, S and T depicted in Figure[3.8, so that {9 = 2(P) +

([2IP) 3(0)and ()= (R)+(S)+(T) 3(0). Suppose we wish to compute
(9.

http://www.craigcostello.com.au/pairings/beginners/3-3-1-WeilRecip1.txt
http://www.craigcostello.com.au/pairings/beginners/3-3-2-WeilRecip2.txt

3.4. Chapter summary 45

Figure 3.8: supp(((*))) and supp(((*9)).

At this point it does not make sense to compute(*9 (or Y*)) since supp(())\
supp((9) = fOg. We can x this by nding a divisor equivalent to, say (),
whose support is disjoint to supp((9). This is easily done by picking a random
point U Zsupp(9 and de ning D = (R+ U)+(S+ U)+(T+U) 3(U). To see
that D 7, observe that R+ U) (U)=(R) (O) by writing down the divisor
of the quotient of the sloped and vertical lines in the addibn of R and U on E.
Computing " ("9 is therefore the same as computin® (*9, but this computation
would then require nding a new function onE with divisor D, so we can invoke
Theorem[3.1 and instead computé{D) as

ey YrRe (Krot 9 (yso (Kso+ Y(yro (Kyo+ 9)
O(D)_ 3
Yo (Xu+ 9

whereR%= (Xgo; Yro) = R+ U, SP= (Xs0;ys0) = S+U and T%= (Xro;yr0) = T+ U
are all such thatR% S% T°62Supp(9, so that “q{D) is the same as ("9 by Weil
reciprocity.

3.4 Chapter summary

We introduced the important concept of divisors on curves. Willustrated their
particular usefulness when used to describe functions onrees, since such a
function is well de ned (up to constant) by its points of intersection with a
curve, and these are precisely what the divisor of the funcih encapsulates. We

46 Chapter 3. Divisors

de ned the divisor class groupof a (hyperelliptic) curve and discussed that for
the case of elliptic curves, there is a bijection between thigroup and the set of
points on the curve, so that we can simply talk about group efeents as points
on E rather than divisors. We further illustrated several usefuproperties and

theorems that play a big role in the realm of algebraic geomgt most notably

the Riemann-Roch theorem and Weil reciprocity. For the mogpart we speci ed

the context to elliptic curves over nite elds, but all of th e results and properties
discussed above apply to arbitrary curves over arbitrary kls.

Chapter 4

Elliptic curves as pairing groups

The purpose of this chapter is to de ne the elliptic groups that are used in
cryptographic pairings. We start with the most abstract denition [Si[10]: a
pairing is a bilinear map on an abelian groupM taking values in some other
abelian groupR

h:i:M M! R:

Suppose that the binary group operations itM and R are respectively denoted
by + and . The bilinearity property of the above map (that classies 1 a
pairing) means that, forx;y;z 2 M, we have

hx +y;zi = ;zi hy;z;

h;y + zi = X, yi hx;zi:
That is, the map h; i is linear in both inputs.

It is this bilinearity property that makes pairings such a paeverful primitive
in cryptography. For our purposes we often nd it advantageos to slightly relax
the condition that the two arguments in the map come from theame group, and
allow them to come from cyclic groups of the same order (whidre therefore
isomorphic). Thus, in the abundance of literature relatedd cryptography, the

a7

48 Chapter 4. Elliptic curves as pairing groups

notation commonly used for the bilinear map is
e:G; Gy Gy:

Our primary objective in this chapter is to de ne the two groys G; and G.,.
The de nition of Gt will come with the de nition of the pairings in the next
chapter.

Currently, the only known instantiations of pairings suiteble for cryptography
are the Weil and Tate pairings on divisor class groups of algeic curves, and in
the simplest and most e cient cases, on elliptic curves. LeFy be some nite
extension ofFy with k 1. The groupsG; and G; are de ned in E(F4), and
the target groupGr is de ned in the multiplicative group Foe
G and G, additively, whilst we write G multiplicatively. Thus, for P;P°2 G;
and Q; Q°2 G,, the bilinearity of e means that

so we usually write

e(P + P5Q) = ¢P;Q) &P%Q);
eP;Q+ Q% = e(P;Q) eP;QY;

from which it follows that, for scalarsa;b2 Z, we have

e([alP; [HQ) = e(P;[HQ)* = e([a]P; Q)° = &(P; Q)* = e([P;[a]Q): (4.1)

Even though we are yet to de neG4, G, or Gy, and we are still a while away
from beginning the discussion of how the pairing(P; Q) is computed, it helps
to immediately see the bilinearity property of pairings in ontext.

Example4.0.1 (Magma script) Let q= 7691 and letE=F, : y* = x3+1. Suppose
Fq is constructedFg = Fo(u) whereu?+1 =0. Let P =(2693;4312)2 E(F,)
and Q = (633u + 6145;73741 + 109) 2 E(Fp). #E(Fy) = 2?2 3 641 and
#E(Fp) =2* 3 647 = # E(Fq)?>. P and Q were especially chosen (we will
see why later) to be in di erent subgroups of the same prime der r = jhPij =
jhQij = 641. The Weil pairing e(;) of P and Q is &(P; Q) = 6744u + 5677 2
Fe- IN fact, r j # Fg, and e(P; Q) actually lies in a subgroup ofFg., namely
the r-th roots of unity , 2 Fg, meaning that ¢(P; Q)" = 1. We are now in
a position to illustrate some examples of bilinearity. Thustake any a 2 Z,
andb 2 Z,, saya = 403 and b = 135, and see that §]P = (4903;2231) and
[0]Q = (5806u+1403; 6091u+2370). We can computeg([a]P; Q) = 3821u+7025

http://www.craigcostello.com.au/pairings/beginners/4-0-1-WeilPairing.txt

49

and verify that e([a]P; Q) = 3821u + 7025 = (6744u + 5677)*% = ¢(P; Q)?; or
e(P;[Q) = 248u + 5 to see that e(P;[0]Q) = 248u + 5 = (6744u + 5677)1 =
e(P; Q) or e([a]P;[HQ) = 2719u + 2731 = (6744u + 5677)%! = g(P; Q)abmodr,
Note that sincee(P; Q) 6 1 2 ., ¢([a]P;[blQ) will only be trivial if r j ab which
impliesr jaorr jb meaning either (or both) of g]P or [BQ must be O. Thus,
e(P; Q) 6 1 guarantees non-trivial pairings for non-trivial arguments; this is a
cryptographically necessary property that is calleshon-degeneracy

Following Example[4.0.1 above, if a pairing is bilinear, non-degenerate and
e ciently computable, e is called anadmissible pairing

Remark 4.0.1 (ECC vs. PBC) This informal remark is intended as a point of
clari cation for PBC newcomers. Our confusion in the early dys of digesting the
vast amount of literature was in part alleviated by one paragph in Lynn's thesis
that helped put the relationship between ECC and PBC in a widecontext. The
only known admissible pairings that are suitable for cryptgraphy are the Weil
and Tate pairings on algebraic curves. The fact that these pangs can be de ned
on elliptic curves, which were already a highly attractive ryptographic setting
before pairings arrived on the scene, is, as Lynn puts it, a &ppy coincidence".
Cryptographers would have welcomed secure, admissiblenpags in any suitable
form, but the fact that they were handed down from the realm ofalgebraic
geometry and are computed on elliptic curves makes them \avenore attractive"”
[Lyn07, x2.9].

In cryptography we need more properties than the three whiclonstitute
an admissible pairing. The magic of the bilinearity propest in (4.1) that gives
pairing-based primitives increased functionality over &ditional primitives is use-
less unless discrete logarithm related problems within athree groups remain
intractable. Example[4.0.1 gives an admissible pairing, bbecause the toy sizes
of G1, G, and G+ clearly o er no resistance in regards to their respective sh
crete logarithm problems, such a pairing instance would @dy never be used.
However, if the sizer of all three groups was in ated to be much larger (say
512 bits), then the corresponding pairing could meet currérsecurity require-
ments and resist all known attacks. We present an alternatévbilinear pairing
that meets the admissible requirements, but (regardless bbw large the group
sizes are) is still not suitable for PBC. This example too, itaken from Lynn's
thesis [Lyn07,x1.9].

50 Chapter 4. Elliptic curves as pairing groups

Example4.0.2 (Magma script) Let r > 1 be an integer. Suppose: G; G;!

Gr hasG; = Gy =Z, and G, = Z ,and isdened bye: (g;a = g® Notice
that for g; ¢ 2 G, we havee(g g%a) = e(g;a) e(g%a), and for a;a® 2 G,
we havee(g;a+ a% = e(g;a) e€(g;ad). Although e is then clearly bilinear,
the discrete logarithm problem inG, is easy, so the power of the bilinear map
becomes somewhat redundant. It is interesting to see, howeeythat we can still
state some of the classical problems in terms of the above fyag. For example,
if we setr to be a large prime, then the standard discrete logarithm pidem
becomes: givelyg2 G;, h2 Gy, nd a2 G, such thate(g;a = h.

4.1 The r-torsion

We now turn our focus towards concretely de ning the group&; and G,. Having
not yet seen how pairings are computed, we will need to makense statements
regarding what we need out 066, and G, that will really only tie together when
the de nitions of the Weil and Tate pairings come in the folleving chapter. The
main such statement is that computing the pairinge(P; Q), in either the Weil
or Tate sense, requires thaP and Q come from disjoint cyclic subgroups of the
same prim@ order r. At this point we can only hint towards why by referring
back to the stipulation of disjoint supports that was made inthe statement of
Weil reciprocity (Theorem[3.1), and claiming that if P and Q are in the same
cyclic subgroup, then the pairing computation essentiallyails because supports
of the associated divisors are forced to undesirably coidei

We have already seen an examplé (4.0.1) of how we can nd moreah
one cyclic subgroup of order, when E(F) itself only contains one subgroup.
Namely, we extendedq to F. and saw thatE (F) nE (Fg) had at least one other
subgroup of orderr, where we were able to de n&) and subsequently compute
e(P; Q). This is precisely the way we obtain two distinct order subgroups in
general: we nd the smallest extensiofiry of Fy such that E (Fy) captures more
points of orderr. The integerk 1 that achieves this is called theembedding
degree and it plays a crucial role in pairing computation. Also at he heart of
our discussion then, is the entire group of points of orderon E (F), called the
r-torsion, which is denoted byE[r] and de ned asE[r] = fP 2 E : [r]P = Og.

1There has been some work that exploits additional functiondity if r is composite, e.g. an
RSA modulus n = pg, but we do not consider this much less common and much less e ient
setting { see [BGNO5/Fre10, BRS11, [ew1?] for more details.

http://www.craigcostello.com.au/pairings/beginners/4-0-2-BilinearMap.txt

4.1. Ther-torsion 51

The following result (seel [ACD 05, Th. 13.13] or[[Sil09, Ch. llI, Cor. 6.4(b)])
is quite remarkable; it tells us not only the cardinality ofE[r], but its structure
too. If K is any eld with characteristic zero or prime tor, we have

E[r]= 2 Z: (4.2)

This means that in general, #£[r] = r2. Furthermore, since the point at in nity

O overlaps into all orderr subgroups, Equation [[4.2) implies that (for primer)

the r-torsion consists of +1 cyclic subgroups of order. The following equivalent
conditions for the embedding degrek also tell us precisely wher&[r] lies in its
entirety. We note that the embedding degree is actually a fustion k(q;r) of q
and r, but we just write k since the context is usually clear.

- k is the smallest positive integer such that j (¢ 1);

- k is the smallest positive integer such thaEy contains all of ther-th roots
of unity in Fq (iLe. » Fg);

- k is the smallest positive integer such thaE[r] E(Fg).

If rk# E(Fq) (i.e. 1 j #E(Fq) but r?2 - # E(F)), then the r-torsion subgroup in
E(Fg) is unique. In this case,k > 1 and (4.2) implies that Fy is the smallest
eld extension of Fq which produces any morer-torsion points belonging to
E (Fg) nE(Fg). In other words, once the extension eld is big enough to ndbne
more point of orderr (that is not de ned over the base eld), then we actually
nd all of the pointsin E[r]= Z, Z,. Scott [Sco04] describes this phenomenon
more poetically:

\... something rather magical happens when a curve with theasne
equation is considered over the eld-y for a certain value ofk. The
group structure undergoes a strange blossoming, and takesanew,
more exotic character.”

We also nd Scott's depiction of the torsion subgrougE[r] especially instructive
[Sco04, Sco07a], so we use it in the following examples andotighout the rest
of this chapter.

Example 4.1.1 (Magma script) Let g = 11, and considerE=F, : y* = x3 + 4.
E(Fy) has 12 points, so taker = 3 and note (from Equation (4.2)) that there
are 9 points in the 3-torsion. Only 3 of them are found irE (F;), namely (0; 2),

http://www.craigcostello.com.au/pairings/beginners/4-1-1-ThreeTorsionFlower.txt

52 Chapter 4. Elliptic curves as pairing groups

(0;9) and O, which agrees with the fact that the embedding degrek 6 1,
since @@ 1) 6 O modr. However, (° 1) O modr which means that the
embedding degree i& = 2, so we formFg = F4(u), with u?+1. Thus, we are
guaranteed to nd the whole 3-torsion inE(Fg), and it is structured as 4 cyclic
subgroups of order 30 overlaps into all of them { see Figuré 4]1. We point out
that although O is in the 3-torsion, it does not have order 3, but rather ordet
{ points of order d j r are automatically included in ther-torsion. Take any two

(2i +7:10)

(9i +7;100)

Figure 4.1: The 3-torsion:E[3].

points P; Q 2 E[3]n fOg that are not in the same subgroup, neither of which
are O. The translation of Equation (4.2) is that any other point in E[3] can be
obtained as {JP +[j]Q, i;j 2f0;1;2g. Fixing P 6 O and letting j run through
0;1;2 landsP +[j]Q in the other three subgroups ofE[3] (that are not hQi {
this corresponds toP = O).

Example4.1.2 (Magma script) In the rare case thatr? j # E, it is possible that
the entire r-torsion can be found overE(Fy), i.e. that the embedding degree
is k = 1. Consider E=F3; : y?> = x3® + 13, which has 25 points, so take = 5.
Sincer jg 1,k =1 and thereforeE[r] E(Fg); Figure[4.2 show the 6 cyclic
subgroups of order 5 constitutingg[5] = Zs Zs. Of course,r? j # E(F,) does
not necessarily imply thatE[r] E(Fg), as points of orderr? are possible.

Before the next example, we introduce an important map that lays an in-
tricate role within the r-torsion subgroups. Since we are working over nite
extension elds ofFg, it is natural that we nd a useful contribution from Galois

http://www.craigcostello.com.au/pairings/beginners/4-1-2-FiveTorsionFlower.txt

4.1. Ther-torsion 53

(1,18) (25,13)

(12,6) (25;18)

(12; 25) (21; 25)

(13;28) (22:11)

(23;20) (23;11) (3;3)

(17;20)
(15,28)
(17;11)

(29; 25)

Figure 4.2: The 5-torsion:E[5].

theory. Namely, thetrace mapof the point P = (Xx;y) 2 E(Fy) is de ned as

X K1 X1
Tr(P) = (P)=" '‘P)= (xT5y%);

2Gal(F y =Fq) i=0 i=0

where is the g-power Frobenius endomorphism de ned in Equation (217). Ga
lois theory tells us that Tr : E(Fg) ! E(Fg), so whenrk# E(Fg) (which will
always be the case from now on), then this map, which is actiyala group ho-
momorphism, sends all torsion points into one subgroup of étr-torsion. We
illustrate in Example [4.1.3 before painting the general piare.

Example4.1.3 (Magma script) We take g = 11 again, but this time with E=F :
y? = x3+7x+2. E(Fg) has 7 points, so take = 7. We already haveE (F)[r], but
to collect E[r] in its entirety we need to extendr, to Fq. This time, the smallest
integer k such that (¢ 1)mod7 0isk =3, so we formFg = Fq(u) with
u®+ u+4=0, and we are guaranteed thatE[7] E(Fg). The entire 7-torsion
has cardinality 49 and splits into 8 cyclic subgroups, as sia in Figure[4.2. To t
the points in, we use the power representation of elementshigs = Fy(u). In this
case, forP 2 E(F), the trace map onE is Tr(P) = (X; y) + (X% y9) + (x4 ye).
For the unique torsion subgroupE (Fg)[r], the Frobenius endomorphism is trivial
((P) = P) so the trace map clearly acts as multiplication by, i.e. Tr(P) =
[kK]P. However, Tr will send every other element in the torsion it E(Fg)[r].
For example, forQ = (u*; u'®49) (in the subgroup pointing upwards), we have

http://www.craigcostello.com.au/pairings/beginners/4-1-3-SevenTorsionFlower.txt

54 Chapter 4. Elliptic curves as pairing groups

(u1315; u485)
(u1165; UGSO)
(UBAS; u165)
(u1165. ulS)

U942; U749)(U1011; u57)
(Ul324§ u1095) (ulOll; u1244)
(U942; U84) (U1324, u430)

u932. u854) (U932' u189)
g (u1301. u234) (u1301- u899)
(U604; UBZS)(UGOA: ulGO)

(u619; u1227)
(u801. ulll4)
(u619; u562)

(u643. u1225)
(U419; u837)
(u1161y u1129)v
U643; USSO)

Figure 4.3: The 7-torsion:E[7].

Tr(Q) = (8 8); for R = (u*?3; u8%) (the lower right subgroup), we have TrR) =
(10; 7); for S = (u0L: y1244) we have Tr(S) = (8 ;3). There is one other peculiar
subgroup inE[7] however, for which the trace map sends each elementQo This
occurs in general, and we are about to see that this has impart consequences
in PBC, but in our case this subgroup is the upper right group @ntaining T =
(U35 utt®0) je. Tr(T)= O, so Tr:hTi! fOg . One nal point to note is that
the embedding degred& = 3 also implies that the (six) non-trivial 7-th roots of
unity are all found in Fg (but not before), i.e. 7nflg 2 Fg nFe.

We now give a general depiction of the-torsion E[r]. To do so, we need to
discuss a few assumptions that apply most commonly to the sw@ios we will
be encountering. Firstly, we assume thatk# E (F,) is prime and the embedding
degreek (with respect tor) is k > 1. Thus, there is a unique subgroup of order
r in E[r] which is de ned overF,, called the base- eld subgroup; it is denoted
by G,. Since the Frobenius endomorphism acts trivially on G;, but nowhere
else inE[r], then it can be de ned asG, = E[r]\ Ker([1]). Thatis, G, is
the [1]-eigenspacef restricted to E[r]. There is another subgroup oE|[r] that
can be expressed using an eigenspace of Referring back to Equation [2.8),
we can easily deduce that the other eigenvalue ofis g, and we de ne another
subgroupG, of E[r] asG, = E[r]\ Ker([d]). It turns out that this subgroup
is precisely the peculiar subgroup we alluded to in Example 3. We callG; the
trace zerosubgroup, since allP 2 G, have Tr(P) = O; this result is attributed

4.1. Ther-torsion 55

to Dan Boneh [Gal05, Lemma 1X.16]. We illustrate in Figuré4i.

/43

Figure 4.4: The behaviour of the trace and anti-trace maps o&[r].

We can also map any’ 2 E[r] to the trace zero subgrou, via the anti-trace
mapaTr : P 7! P°=[k]P Tr(P); showing that Tr(P9 = O is a worthwhile
exercise for the reader.

To de ne our pairing, we need to specify the two group§&; and G,: these
G's are not to be confused with theGs that stand for two speci c r-torsion
subgroups, asG; and G, can be de ned as any of ther + 1 groups in E[r].
As we will see however, there are many reasons we would likesfmeci cally set
G, = G and G, = G, but as we will also see there are reasons that we may
not want this to be the case. The existence of maps to and fronhe di erent
torsion subgroups a ects certain functionalities that cryptographers desire in a
pairing-based protocol. These functionalities and the cices that are available
to us will be discussed in a moment, but we must rst look at onéast map that

56 Chapter 4. Elliptic curves as pairing groups

is available for a special class of curves.

Over prime elds, we call an elliptic curveE supersingulaﬂ if # E(Fg) = g+1.
There are several other equivalent conditions [Sil09, Ch.,Wh. 3.1(a)], but the
most meaningful property for our purposes is that a supergyular curve comes
equipped with adistortion map ; this is a non-{Fg-)rational map that takes
a point in E(Fg) to a point in E(Fy) [Gal03, xIX.7.2]. A curve which is not
supersingular is called amrdinary curve, and it does not have such a map [Ver01,
Th. 11]. We give two examples of elliptic curves that are supgngular, and show
the behaviour of the distortion map within the torsion.

Example 4.1.4 (Magma script) Let q = 59, for which E=F, : y> = x3+ 1 is
supersingular, meaning #(Fy) = q+ 1 = 60, so taker = 5. The embedding
degree isk = 2, so we construct the extension as e = Fq(i), i?+1 = 0.
3 = 24i + 29 is a cube root of unity, for which the associated distortin map is

:(x;y) 7! (3x;y). The fact that 2 is equivalent to the identity map onE is
illustrated in Figure 5.

(18; 46) (36; 37)
(1;360)

(36;22)

(18, 13)
(28,8)
(28;51)

(21i +41;37)
(35i +29;23) (35i +29;36)
(21i +41;22)

(36 +45;8) (38i +41;22)

(40 +50; 13)
(40i +50;46)

(24i +29: 36)

(381 +41;37)

Figure 4.5: The distortion map : (x;y) 7! (3;y¥) on E[5].

2This terminology should not be confused with the singular vs. non-singular de nitions
illustrated in, and discussed above, Figure§ Z]1[-214.

http://www.craigcostello.com.au/pairings/beginners/4-1-4-Supersingular1.txt

4.1. Ther-torsion 57

Example 4.1.5 (Magma script) We take the same elds as the last example
(g =59, F = Fq4(i), i+ 1 = 0), but instead use the supersingular curve
E=F, : y? = x3+ X, which therefore also has #(F,) = 60. This time, the
distortion map is : (x;y) 7! (x;iy), from which it is easy to see that # is
equivalent to the identity map onE. In Figure[4.6, we see that (in this case) the

(25; 30) (34; 301)
(25; 29) (34;29)
(35; 28) (24;28))

(3531) \ [(24:31)
(31i +51; 34i +49) G \[& (31i: 22i +37)
T
(281 +8:10i +34) (2% 4849 +25) N (551 41i +18) [55i; 18 + 41)
T
(31i; 37 + 22)

(31i +51;25 +10)

4i; 18 + 18)
28i +51;25 +49)
_ _ (28i; 37 +37)
(311 +8;49 +34)
(28i +5Js'1;34j +10) (4i; 41 +41)
l
(31i +8:10 +25) (28i: 22i + 22)

Figure 4.6: The distortion map :(x;y) 7! (x;iy) on E[5].

distortion map does not always move elements out of their sgtoup, but rather
restricting to, say the torsion subgroup generated by (28 51; 25 +49), gives
an endomorphism orh(28i + 51; 25 +49)i. This hints towards one of the major
optimisations in pairing computations. Namely, in Chapteld we saw the power of
endomorphisms applied to ECC (speci cally in Exampl€2.21)), and in Chapter
[7 we are going to see that endomorphisms on torsion subgrouftike the one
above) can be used to great e ect in PBC.

We summarise the available maps within the-torsion. From any subgroup

http://www.craigcostello.com.au/pairings/beginners/4-1-5-Supersingular2.txt

58 Chapter 4. Elliptic curves as pairing groups

in E[r] that is not G, or G, we can always map into eithes, or G, via the trace
and anti-trace maps respectively. IfE is ordinary, we do not have computable
maps out of G, or G, otherwise ifE is supersingular then the distortion map
is a homomorphic map out of these two subgroups.

4.2 Pairing types

As we mentioned before the previous two examples, the intéay between the
maps that are available in any given scenario gives rise to elient functionalities
within a pairing-based protocol. Galbraithet al. [GPS08] were the rst to identify
that all of the potentially desirable properties in a protool cannot be achieved
simultaneously, and therefore classi ed pairings into ctin types There are now
four pairing types in the literature; Galbraith et al. originally presented three,
but a fourth type was added soon after by Shacham [Sha05]. Tpairing types
essentially arise from observing the (practical) implicabns of placingG; and
G in di erent subgroups of E[r]; in fact, it will soon become obvious that it is
always best to setG; = G, so the four types really are tied to the de nition of
G,. The main factors a ecting the classi cation are the ability to hash and/or
randomly sample elements o6,, the existence of an isomorphism : G, ! G;
which is often required to make security proofs work (see [&®8]), and (as
always) issues concerning storage and e ciency.

We follow the notation and descriptions of Cheret al. [CCSQ7], and describe
each pairing type in turn. The illustrations of each type aren Figures[4.7F4.1D,
where the base- eld groupG, = E[r]\ Ker([1]) with generator P, is always
in the top left, whilst the trace-zero subgroupG, = E[r]\ Ker([q]) with
generator P, is always in the top right. Let P; be the generator ofG; and P,
be the generator ofG,. It should be born in mind that the pairing e(P; Q) will
only compute non-trivially if P and Q are in di erent subgroups.

- Type 1 pairings. This is the scenario wherdt is supersingular, meaning we
can map out ofG, with . Thus, we setG; = G, = G, (with P, = P, = Py).
When it comes time to compute a pairinge between sayP and Q, we can
use tomap Qto (Q)and dene eP;Q) = &P; (Q)), where &is the
Weil or Tate pairing. There are no hashing problems (gettingito E (Fg)[r]
requires a simple cofactor multiplication once we have hasth into E (F,))
and we trivially have an isomorphism from G, to G;. The drawback

4.2. Pairing types 59

of Type 1 pairings comes when considering bandwidth and e ency: as
we will see in Chapter 6, the condition thatE be supersingular is highly
restrictive when it comes to optimising the speed of computg the pairing.
See Figurd 4.

The remaining three cases are de ned over ordinary ellipticurves, so (as we will
again see in Chaptell6) there are no restrictions imposed ofmet choice of elliptic
curve that lead to a loss of e ciency. For all these situatios we haveG; = G

and P; = P; (where hashing is relatively easy), so we only need to dissuthe

choices forG, and P-.

- Type 2 pairings. In this situation we take G, to be any of ther 1 subgroups
in E[r] that is not G, or G. We have the map :G,! G; as the trace
map Tr. We can also use the anti-trace map to move elements oG,
into G, for e ciency purposes. The drawback is that there is no known
way of hashing intoG, speci cally, or to generate random elements d&.
The best we can do here is to specify a generatBp 2 G, and generate
elements via scalar multiplications ofP,, but this is often undesirable in
protocols since we cannot generate random elements withduatowing the
discrete logarithm with respect toP,. See Figurd_4.8.

- Type 3 pairings. In this scenario we takeG, = G, the trace zero subgroup.
We can now hash intoG,, at the very least by following a cofactor multi-
plication in E(Fy) by the anti-trace map aTr : E[r] ! G , (we will soon see
that there is a much more e cient way than this). The ironic drawback
here is that the only subgroup (beside&,) that we can hash into is also the
only subgroup we can not nd a map out of. An isomorphism :G,! G;
trivially exists, we just do not have an e cient way to compute it. Thus,
security proofs that rely on the existence of such a are no longer appli-
cable, unless the underlying problem(s) remains hard whehd adversary
is allowed oracle access to [SV07]. See Figuré419.

- Type 4 pairings. In this situation we take G, to be the wholer-torsion
E[r], which is a group of order?. Hashing into G, is possible, but not very
e cient, however we cannot hash into the particular subgrop generated
by any specic P, (i.e. G, is not cyclic). Note that hashing into E[r] will
only give an element inG, or G, (which is undesirable in this case) with
negligibly low probability for large r. See Figuré_4.70.

60 Chapter 4. Elliptic curves as pairing groups

Figure 4.7: Type 1 pairings. Figure 4.8: Type 2 pairings.

Figure 4.9: Type 3 pairings. Figure 4.10: Type 4 pairings.

Prior to these di erent situations being brought to the attention of the PBC
community [GPSO08], authors publishing pairing-based protols were often in-
correctly assuming combinations of the associated propes$ that could not be
achieved in practice. The message to designers of pairingsbd protocols was
that individual attention is required to prescribe the paiing type which best
suits any particular pairing instantiation. Whilst some aithors have since fol-
lowed this advice closely, a good example being [CCS07, Tebl1-6], it still
seems most common that designers of pairing protocols takeeteasy way out
and assume a Type 1 pairing. This approach is somewhat justid, as it allows
cryptographers to avoid getting bogged down in the complexethils of pairings
whilst still enjoying all their functional properties, but overall it is less than sat-

4.3. Twisted curves 61

isfactory. The reason is that, at current levels of securifya Type 1 pairing is
orders of magnitude more costly than say, a Type 3 pairing. M@adays all of
the state-of-the-art implementations of pairings take plee on ordinary curves
that assume the Type 3 scenario, where the only poten@asacri ce is the map

: G, ! G;. Moreover, Chatterjee and Menezes [CMO09] paid closer attem
to the role of in protocol (proof) designs and essentially argue that theris
no known protocol/proof of security that cannot be translaed into the Type 3
setting, claiming that Type 2 pairings (which are less e ciet but have) are
merely ine cient implementations of Type 3 pairings. We noe that their claim
is only based on empirical evidence; they posed a counteraexle as an open
problem. Nevertheless, the nal message of Menezes' rethiteCC2009 talk is
that \protocol designers who are interested in the performae of their protocols
should describe and analyse their protocols using Type 3 pags" [Men09].

For the remainder of this text then, and unless otherwise stad, the reader
should assume we are in the Type 3 scenario whé&e = G, = E[r]\ Ker([1])
and G, = G = E[r]\ Ker([aD.

4.3 Twisted curves

Before moving our focus to the algorithm for computing pairigs, we have one
nal point to discuss; namely, the most e cient way to hash to, and represent
elements inG,. This discussion brings up the crucial notion ofwists of elliptic
curves, which was rst applied to pairings by Barretoet al. [BLS03]. We start
with an example.

Example 4.3.1 (Magma script) Recall the curve used in Examplé4.1.1q =
11, E=Fq : y?> = x>+ 4, # E(Fg) = 12 and r = 3. Excluding O, the trace
zero subgroupG, consists of points de ned inE (Fg), namely (8;i) and (8; 10i).
De ne the curve E&F, :y?> = x® 4 and observe that the map * de ned by
Lo(x;y) 7' (x;iy) takes points fromE to E® i.e. ':E! EC% Restricting

! to G, actually gives a map that takes elements de ned ovef, to elements
dened over Fy: 1((8;i)) =(3;10) and %((8;10)) = (3;1). The convention
is to write for the reverse map : E°! E which in this case is de ned by
C(xC%y9 7 (xC%y%=i) = (X% y9). We call E? a twist of E. Every twist

3The are some protocols whose security actually relies on thmability to compute e -
ciently.

http://www.craigcostello.com.au/pairings/beginners/4-3-1-QuadraticTwist.txt

62 Chapter 4. Elliptic curves as pairing groups

has a degreel, which tells us the extension eld ofF, where E and E® become
isomorphic. For our purposesd is also the degree of its eld of de nition ofE°
as a sub eld of Fy, i.e. a degreed twist E°of E will be de ned over Fyeq. In
this example,k = 2 and E®is de ned over F,, so we are using a = 2 twist,
called aquadratic twist Ordinarily, computations in the group G, = G, would

(i +7:0) (9i +4;10)

(2i +7;10) (9i +7:10) (9 +4:1) 2i +4;10)

Figure 4.11:E (left) and the quadratic twist E° (right).

require (point doubling/addition) operations in the extersion eld Fg, but we
can use !to instead perform these operations ifE {F,), before mapping the
result back with . Moreover, if we restrict the maps to E[r], then ! takes
elements of the trace zero subgrou@® of E and moves them to the base eld
subgroup G} of E® Note that computing and 1is essentially cost free.

We give a larger example that better illustrates the power oemploying
twisted curves.

Example 4.3.2 (Magma script) Let g = 103 and considerE=F, : y? = x3 + 72,
which has #E (F,) = 84, so letr = 7. The embedding degree (with respect to) is
k =6, so form Fg = Fo(u) with u®+2 = 0. The trace zero subgroupG, = E[r]\
Ker([d]) is de ned overFg, and is generated by (36% 42u3) (see Figurd Z.1P).
We de ne the degreed = 6 sextic twistE®of E asE®: y? = x3+72u®, where the
back-and-forth isomorphisms are de ned as :E°! E, (x%y9 7! (x=u?; y&=ud)
and : E ! E% (x;y) 7! (u?x;u’y). Observe that ! maps elements in
G, 2 E(Fq)[r] = E(Fg)[r] to elements inE{Fyes)[r] = EYFg)[r]. Thus, when
performing group operations inG, = G, we gain the advantage of working over

http://www.craigcostello.com.au/pairings/beginners/4-3-2-Twist:unTwist.txt

4.3. Twisted curves 63

O O

Figure 4.12:E (left) and the (correct) sextic twist E° (right)

Fq instead of Fg, a dramatic improvement in computational complexity.

In both Example 4.3.1 and Example 4.3.2 above, we h&d= d, so the twist
allowed us to work in the base eldF,, rather than Fy. In the general case
though, the twist will pull computations back into the subeld Fyes of Fe.
For example, if the embedding degree wds = 12, a quadratic twist (d = 2)
would allow computations inG, to be performed inFg rather than Fge, whilst
a sextic twist (d = 6) would allow us to instead work inFg. Thus, we would
clearly prefer the degreeal of the twist to be as high as possible. As it turns
out, d = 6 is the highest degree available on elliptic curves, wherde only
possibilities ared 2 f 2; 3; 4; 6g [Sil09, Prop. X.5.4]. Ford > 2, we also require
special subclasses of curves that depend dnso following [Sil09, Prop. X.5.4]
(see also [HSVO06, Prop. 6, Prop. 8]) we describe all four casedividually. In
the general case according to our context, a twist & : y> = x3+ ax + bis
given by E®:y2 = x3+ al 4x + b!' 8, with : E°! E : (x%y9 7! (x%=!2;y%!3),

' 2 Fq. We can only achieve speci c degrees through combinations of zero
and non-zero values foa and b.

- d = 2 quadratic twists. Quadratic twists are available on any elliptic curve,
so if E=Fy : y? = x®+ ax + b, then a quadratic twist is given by E*=F - :
y? = x3+ al i+ bl® with I 2 Fg but 12 2 Fye.. Since! 3 2 Fy,
the isomorphism : E°! E dened by :(x%y9 7! (x%!2;y®=!3) will
take elements iNE{F-2) to elements inE(Fy), whilst ~ * will do the

64 Chapter 4. Elliptic curves as pairing groups

opposite.

- d = 3 cubic twists. Degreed = 3 twists can only occur whena = 0, so if
E=Fy:y?= x®+ b, then E®=F s : y* = x3+ bl ®, with 1 3,1 °2 Fyes, but
22 Fg nFyea. Thus, the isomorphism : E°! E (de ned as usual)
will take elements iNEY{F«:) to elements inE (Fy), whilst * does the
opposite.

- d = 4 quatrtic twists. Degreed = 4 twists are available whenb = 0, so if
E=Fy :y*> = x®+ ax, then E=Fyes 1 y? = x3+ al *x, with 1 4 2 Fyea,
122 Fyez and! 3 2 Fg nFye2. Thus, will move elements in EYFy-4) up
to elements inE (Fg), whilst * will move elements fromE (F«) down to
EYFges).

- d = 6 sextic twists. Sextic twists are only available whema = 0, so if
E=Fy:y?= x3+b thenE%Fyes 1 y? = x3+ 0!, with 1 ® 2 Fpes, ! 3 2 Fyes
and! 22 Fqe2. Thus, pushes elements inEO(Fqk=e) up to E(Fg), whilst

! pulls elements fromE (F¢) all the way down to Eo(Fqk:G).

We make the remark that, for our purposes, a speci c twist caonly be ap-
plied if the curve is of the corresponding form abovand the embedding degree
k hasd as a factor. Thus, attractive embedding degrees are those ialn have
any of d = f2;3;4;6g as factors, but preferablyd = 4 or d = 6 for increased
performance. This will be discussed in detail in Chapter 6. éry fortunately,
we will also see in that chapter that almost all of the populatechniques for
constructing curves suitable for pairing computation giveise to curves of the
form y?2 = x3+ bor y?2 = x3 + ax, which facilitate the high-degree twists above.

4.4 Chapter summary

We started by discussing that cryptographic pairings are bhear maps from two
elliptic curve groups to a third (nite eld) group e: G; G, ! Gt. We then
claimed that, in general, to de ne a useful pairing onG; and G,, we must be
able to de ne more than one subgroup in the -torsion of E, where the most
cryptographically useful case is thatr is a large prime. We then de ned the
embedding degred of E (with respect to r), and showed that we must extend

4.4. Chapter summary 65

the eld Fy to Fy in order to nd more than one such subgroup. In fact, we
showed thatE (Fy) actually contains the entirer-torsion, which has cardinality
r2 and consists of +1 cyclic subgroups of order. Theser +1 subgroups (and the
existence of maps between them) facilitate several choidesthe de nitions of G;
and G,, which gives rise to four pairing types. We argued that the ngt popular
pairing type is a Type 3 pairing, which set<5; and G, as the two eigenspaces of
the Frobenius endomorphism, namelg; = G, = E[r]\ Ker([1]) is the base
eld subgroup, and G, = G, = E[r]\ Ker([d]) is the trace zero subgroup.

The de nitions of the Weil and Tate pairings in the next chapter inherently
justify the claim we made in this chapter that, in general, tle argumentsP and
Q in the pairing e(P; Q) must come from distinct torsion subgroups.

66

Chapter 4. Elliptic curves as pairing groups

Chapter 5

Miller's algorithm for the Well
and Tate pairings

This chapter de nes the Weil and Tate pairings and presents Mer's algorithm
for computing them. As usual, we state the de nitions in our ontext (on elliptic
curves over nite elds), but the more general de nitions are analogous (see
[Sil09, Gal05]).

Notation. In this chapter we will use the notationw, (P; Q) for the (order r)
Weil pairing of P and Q and t,(P; Q) for their (order r) Tate pairing, as this
will help when discussing di erences and relationships beeen them. After this
chapter though, it will always be clear which pairing we meaand what the value
of r is (the largest prime factor of #E(Fg)), so we will return to the notation
most commonly seen in the literature and simply write(P; Q).

Both pairings make use of a special case of the following fage recall from
Chapter 3: a divisorD = PIQP(P) is principal (i.e. the divisor of a function)
ifandonlyif ,np=0and [np]P = OonE. Foranym2 Z andP 2 E,
it follows that there exists a functionf ., with divisor

(fmp) = m(P) (m]P) (m 1)(O); (5.1)

where we note that form = 0, one can takefop = 1 with (fop) the zero divisor.

67

68 Chapter 5. Miller's algorithm for the Weil and Tate pairings

Thus, if P 2 E[r], then f.p has divisor
(frp)=r(P) r(O): (5.2)

Observe that fn+1p) (fmp) = (P)+([m]P) (Im+1]P) (O), which is
exactly the divisor of the function "nip.p =Mm+11p, Where ‘[mp.p and vim.qyp are
the sloped and vertical lines used in the chord-and-tangeaddition of the point
[m]P and P (see Figure 5.1). This means we can builth,.; .p from f.p via

[mIPP

fmirp = :
m+1;P m;P Vim+1] P

[m+1]P

Figure 5.1: """ =(Cmpep) (Vmege) =(P)+([m]P) (m+1]P) (O).

Vim+1] P

Example 5.0.1 (Magma script) Let q = 23, and considerE=F : y? = x3 +
17x + 6 which has #E(F;) = 30, and which hasP = (10;7) as a point of
order 5. Thus, we are guaranteed the existence of a functidgp on E with
divisor (fsp) = 5(P) 5(0). Starting with m = 2, we will build fsp by using
fmerp = Tmp _miPp (note that (f1.p) is the zero divisor). The functionf,.p

Vim+1] P

with divisor (fop) = 2(P) ([2]P) (O) is the tangent line lp.p at P divided

by the vertical line vizp through [2]P, which isf,p = Y219 \We compute the

function f3p asfazp = fop ez wherelp.zp is the chord throughP and [2P

Vgip

. . . 2
and vige is the vertical line at [3P. Thus, fgp = Y2XH9 Y1X00 = 3ytxcA9xtld

Similarly, multiplication by the chord Ip.5p through P and [3P and division by
the vertical line vie through [4]P will advance us fromfsp to f4p, asfsp =
fa IS[LS]; = YxCa9xily ya2xil9 o (GR)YEXIEXIS hig function has divisor
(fazp) = 4(P) (4P) 3(O). The last update we require is the function with
divisor (P)+(4P) (5P) (0O), which would ordinarily be the quotient of lines
in the addition of P and 4P, but since P has order 5, we know thatP = 4P,

so this function actually has divisor P)+(P) 2(O). Thus, our last update

5.1. The Weil pairing 69

to the function is simply the vertical line atP, i.e. (x 10), which gives the nal

function asfsp = (x 10) QH2AYEXIINS - (y 4 29)y + 52 + 3x + 5; this

function has a zero of order 5 ot at P, and a pole of order 5 orE at O.

5.1 The Weil pairing

For a point P 2 E[r], the function f.p with divisor r(P) r(O) is at the heart
of both the Weil and Tate pairing de nitions.

De nition 5.1 (The Weil pairing (over nite elds)) . Let P;Q 2 E(F4)[r] and
let Dp and Dq be degree zero divisors with disjoint supports such tiag (P)
(O) andDg (Q) (O). There exist functionsf and g such that(f) = rDp
and (g) = rD . The Weil pairing w;, is a map

w, i E(Fg)lr] E(Fg)lr]! o

de ned as

f(Do).
g(Dp)’

Among other properties, the Weil pairing is bilinear and nordegenerate. We
refer the reader to [Sil09, Ch. IlI, Prop. 8.1-8.2] for the mofs and full list of
properties.

An important point to note is that we can not simply de ne the Weil pairing
asw;(P;Q) = f.p(Dg)=f.o(Dp), because {;p) = r(P) r(O)and (f.q) =
r(Q) r(O); this corresponds to the divisordp = (P) (O)andDq =(Q) (O),
which does not adhere to the requirement thaD» and D q have disjoint supports.

w; (P; Q) =

Example 5.1.1 (Magma script) Let q = 23, and considerE=F; : y?> = x3 X,
which (is supersingular and therefore) has E(Fy) = q+ 1 = 24. The point
P =(2;11)is a point of orderr = 3 and the embedding degree with respect tois
k = 2. Take F = Fq4(i) with i?+1 = 0, from which we obtain a point Q of order 3
(thatis notin hPi)asQ = (21; 12), which is actually in the trace zero subgroup,
i.e. (Q)=[q]Q. Suppose we wish to compute the Weil pairing; (P; Q) of P and
Q. For illustrative purposes, we will start by computingf.r and f.o and then
updating according to the above paragraph. Following the sae technique as the
last example, we get ., andf.q asf;p = y+11x+13 andf.q = y+11ix +10i,

70 Chapter 5. Miller's algorithm for the Weil and Tate pairings

which have divisors {.p) =3(P) 3(0) and (g.p) =3(Q) 3(O) respectively.
We need to nd divisors Dp and Dq that have distinct supports but which are
respectively equivalent to P) (O) and (Q) (O). Note that only one of
these divisors needs to be updated (so that its support doestrcontain O), but
we will update both in the name of symmetry. Thus, take two ma (random)
points in E(Fg) as R = (17i; 2i + 21) and S = (10i + 18;13 + 13), and set
Dp =(P+R) (R)and Dg = (Q+ S) (S). We nd f as a function
with divisor Dp and g as a function with divisor Dg asf = f.p =("p.r=Wp+r)*>
and g = g0 =("o:s=Vo+s)> respectively, where' p.r=Vp. r is the quotient of the
chord betweenP and R and the vertical line through P + R (and similarly for
“0:s=Vo+s). We can now compute the Weil pairing according to De nition5.1
as

W (P;Q) = f(Dg)=dyDe)
_f(@Q+S) o).
f(S) g(P+R)’
=15i +11:
Observe that (15 + 11)2 = 1 so w,(P;Q) 2 . Repeating the whole pro-

cess with [2P instead givesw, ([2]P;Q) = 8i + 11 = w,(P; Q)?, or with [2]Q
gives w; (P;[2]Q) = 8i + 11 = w,(P;Q)?, or with both [2]P and [2]Q gives
w, ([2]P;[2]Q) = 15i +11 = w, (P; Q)* = w, (P; Q), which is about as much of the
bilinearity of w, that we can illustrate in this toy example.

5.2 The Tate pairing

The formal de nition of the Tate pairing requires that only one argument comes
from the r-torsion. For our purposes, the other argument can be any puiof
E (Fg), but we will soon see that in general it is still advantageaito choose both
points from (distinct subgroups in) the r-torsion. In order to de ne the Tate
pairing correctly though, we need to properly de ne the grops involved. We
assume the standard setting that is of most interest to uk > 1, rk# E(F,) and,
since there are ? points in the subgroupE (F)[r], we usually haver ?k# E (F).
Thus, let h = # E(Fq)=r? be the cofactor that sends points irE (Fy) to points

5.2. The Tate pairing 71

in E(Fq)[r]. Let rE (Fg) be the cosetof points in E(F4) de ned by
rE (Fg) = f[r]P : P 2 E(Fg)0:

The number of elements ifE (Fy) is h and it contains O; from here we will
simply denote this coset ask . Following [Sco04], we can obtain another distinct
coset ofE(Fy) by adding a random elementR (not in E[r]) to each element
of rE. In this way we can obtain preciselyr? distinct, order h cosets. The
quotient group E=rE is the group whose elements are these cosets. We note
that elements belonging to each coset do not have the same erdnor do they
form a (sub)group. In the quotient groupE=rE, points belonging to the same
coset (group element) can be used tepresentthe coset. Any two points in the
same coset di er from one another by an element inE, so one can think of
E=rE as the set of equivalence classes of pointskrfFy) under the equivalence
relation P, Py if and only if P, P, 2 rE [Gal05, IX.3].

Example5.2.1 (Magma script) Let g =5, and considerE=F, : y> = x® 3, which
has #E(Fq) = 6. Thus, taking r = 3 gives k = 2, so take Fpe = Fy(i), where
i2+2 = 0. Further, note that # E(Fg) = 36 = hr?, soh = 4, and thus taking
rE = f[8]P : P 2 E(Fg)g givesrE = fO;(3i +4,0);(2i +4,0);(2;0)g, with
#rE = h. Each of the other 8 cosets ife=rE are shown in Figure 5.2, where we
importantly note that each coset has a uniqueepresentative elementhat lies
in the r-torsion (see Figure 5.3). Consider the coset containir®y = (2i; 4i + 3)
P, =(4;1), P; = (3;2) and P, = (3i;i +3)g. All of the non-trivial pairwise
dierences are (dened by)P;, P,=P; P;=(@Bi+4;0),P; P3s=P, P;=
(2i+4;0)andP; P4=P, P3=(2;0), which are all inrE .

For our purposes E[r] and the quotient groupE=rE both haver? elements,
but although it was the case in Example 5.2.1, it is not necemsly the case that
the elements ofE [r] each represent a unique coset &=rE (see [Gal05, 1X.3] for
a counterexample). However, if 2k# E (F¢), then E[r]\ rE = O, which means
that adding a unique torsion element to all of the elements inE will generate
a unique coset inE=rE. That is, r?k# E(Fy) implies that E[r] does represent
E=rE (see [Gal05, Th. IX.22] for the proof in the supersingular soario), and
this will always be the case for us. This is particularly corenient when it comes
to de ning the Tate pairing, since the \second" group in the @rder r) Tate

lIn fact, they always have the same number of elements, but thes are cases when the
cardinality is not r? { see [Gal05, IX.3, IX.7.3]

72 Chapter 5. Miller's algorithm for the Weil and Tate pairings

(0) (3;2) (i+2;0)
(4;1) (3;1)
(2i; 4i +3) (0;3i)
(2;0) (3i;i +3) (4i +2:0)
(2i+1;2) (i+3:4) (1;40)
(i+1;i+3) (i+1;4i+2) (4i +2;4i)
(4i+4;4i +3) 4i+4;i+2) (0:20)
(i+3;1) (2i +1;3) (i +2;4i)
(3i+1;3)
(3i; 4i +2) (4i +3;4) (4i+3;1)
25 +2) (B8i+1;3) (4i +1;4i +3)
(3:3) (4i+15i+2) (Bi+1:2)
(4;4) (i+4;4i +2) (i+4;i+3)

Figure 5.2: Ther? cosets in the quo- Figure 5.3: Ther-torsion, where each
tient group E (Fg)=rE (Fq). P 2 EJr]isin adistinct coset ofE=rE .

pairing is E=rE. As we will see after the de nition, E[r] representing E=rE
allows us to take both groups from the -torsion, which matches the somewhat
simpler Weil pairing group de nitions.

We note that although we refer to the following pairing as theTate pairing
throughout, it is often aptly called the Tate-Lichtenbaum pairing [Sil09, XI1.9].
This is because Lichtenbaum [Lic69] specialised Tate's neogeneral pairing to
the case of Jacobians of curves (over local elds) which fétates explicit com-
putation [Gal05, IX.3].

De nition 5.2 (The Tate pairing (over nite elds)) . Let P 2 E(F)[r], from
which it follows that there is a functiorf whose divisor igf) = r(P) r(O). Let
Q 2 E(F4) be any representative in any equivalence class B(Fq)=rE (Fq),
and letDq be a degree zero divisor de ned ovéiy that is equivalent to(Q) (O),
but whose support is disjoint to that off). The Tate pairing t; is a map

t, P E(Fg)lr] E(Fg)=rE(Fg) ! Fqk:(Fqk)r;
de ned as
tr(P; Q) = f(Do):

Again, we remark that among other properties, the Tate pairig is bilinear

5.2. The Tate pairing 73

and non-degenerate. We refer the reader to [Sil09, XI1.9] an@al05, 1X.4] for
the proofs and full list of properties.

The quotient group F o =(Fqk)r is de ned as we would expect. Namely,F(qk)r
is a subgroup oﬂ:qk de ned as (Fqk)r =fu :u2 F9: SO Fqk=(Fqk)r is the set
of equivalence classes Equ under the equivalence relatiora; a, if and only if
=& 2 (Fu)"

Example5.2.2 (Magma script) We continue with the parameters from Example
5.2.1. LetP =(3;2) 2 E[r] (see Figure 5.2) and leQ = (i +1;4i +2) 2 E(Fg).
The functionf :y+2x+2 =0o0n E has divisor 3¢) 3(0), so to compute the
Tate pairing we need to nd an appropriateDg (Q) (O) but with P;0 62
supp(Dyg). Take R (randomly) asR = (2i;i +2), and let Do =(Q+ R) (R),
whereQ + R =(3i +1;2). The Tate pairing is computed as

f(Q+R) 2+2 (Bi+1)+2
f(R) ~ (i+2)+2 2i+2

t(P;Q) = f(Dq) = =4i+4:
To illustrate bilinearity, computing t,(P;[2]Q) with Do = ([2]Q+ R) (R)
where [2D + R = (i +2;1i) gives

f[2Q+R) _ i+2 (i+2)+2

TR (+2)+2 2+2 2*4

tr(P;[21Q) = f (Do) =

or computing t, ([2]P; Q), wheref~= y + 3x + 3 has divisor ™= r([2]P) r(O),
gives

f{Q+R) _ 2+3 (3i+1)+3
f(R) (i+2)+3 2i+3

t ([2]P; Q) = f(Dq) = =3i+2;

Note that t,(P; Q) = 4i + 4, t,(P;[2IQ) = 2i + 4 = t,(P;Q)?, but t,([2]P; Q) =
3i+2, ie t(P;[2IQ): t ([2]P; Q) 62(F)", but t,(P;[2]Q)=t([2]P; Q) 2 (Fy)",
sot (P;[21Q) t([2]P;Q t(P;Q)?in Fqk:(Fqk)r-

The above example illustrates an important point: in the cotext of cryptog-
raphy, the standard Tate pairing has an undesirable propeytthat its output lies
in an equivalence class, rather than being a unique value. Aecessary attribute
for the Tate pairing to be useful in cryptography is that di erent parties must
compute the exact same value under the bilinearity propertyather than values
which are the same under the above notion of equivalence. ™uo be suitable
in practice, we must update the de nition of the Tate pairingto make sure the

74 Chapter 5. Miller's algorithm for the Weil and Tate pairings

mapping produces unique values.

De nition 5.3 (The reduced Tate pairing) Let P, Q, f and Dg be as in De -
nition 5.2. Over nite elds, the reduced Tate pairing T, is a map

T, : E(Fqk)[r] E(Fqk)=rE(Fqk) ! r
de ned as

T.(P;Q) = t,(P; Q"™
=fp (DQ)(q" D=r.

Exponentiating elements inFqk =(Fqk)r to the power of @ 1)=r kills r-th
powers and sends the paired value to an exacith root of unity in ;.

From now on we will also take the second argument of the (reded) Tate
pairing from the r-torsion. In fact, we will further assume a Type 3 pairing.
Therefore, in the pairing ofP and Q, we will assumeP 2 G, = E[r]\ Ker([1])
and Q 2 G, = E[r]\ Ker([d]). One should note that these choices are not
restrictions, as far as what values the pairing can take: xig P and letting Q
run through hQi (which has orderr) will give each value in , and vice versa.
Thus, for any P'; Q pair chosen from anywhere in the torsion, there exists a seaal
0 a r 1suchthatT,([a]P;Q)= T,(P;[aQ)= T,(P;Q).

Example 5.2.3 (Magma script) Let q = 19, E=F, : y?> = x3+ 14x + 3, giving
E(Fq) = 20, so taker = 5. The embedding degree i& = 2, so let F = Fq(i)
with i2+1 = 0. The points P = (17;9) and Q = (16;16) are in the r-torsion
subgroupsG; = E[r]\ Ker([1]) and G, = E[r]\ Ker([a]) respectively.
The Tate pairing of P and Q ist, (P; Q) = 71+3, whilst the reduced Tate pairing
is T,(P;Q) = 15i + 2. Let exp : Fqk:(Fqk)r ! + be the map de ned by the
exponentiation exp :a 7! ad D= je, exp :t;,(P;Q) 7! T,(P;Q). Observe
the di erence between the Tate pairingt, and reduced Tate pairingT, for the
following computations.

tr(P;Q)* tr ([41P; Q) tr (P;[41Q) tr ([2]P; [2IQ)
=3i+7 =7i+16 =12i +3 =2i+14

[exp }'exp }'exp }'exp

T (P;Q)* Tr ([41P; Q) T: (P;[41Q) T ((2]P:[2]Q)
=4i+2 =4i+2 =4i+2 =4i+2

5.3. Miller's algorithm 75

We note that none of thet, lie in (Fg)°, but the quotient of any two of them
does lie there, so all the, pairings on the top level are equivalent irFqk :(Fqk)r.
On the other hand, T, ensures that each of the above pairings (that should be
equivalent) take exactly the same value in, F.

From now on, when we say Tate pairing, we mean the reduced Tapairing
T, in De nition 5.3.

5.3 Miller's algorithm

We brie y recap the pairing de nitions from the previous two sections. For the
r-torsion points P and Q, the Weil and Tate pairings are respectively computed
as :; EBS; and f.p (D)@ D=, where the divisorsDp and Do are chosen such
that their supports are disjoint from the supports of ..o) and (f .p) respectively.
For any points P and Q belonging to distinct subgroups inE[r], we have already
seen how to computef .» (Dg) in the previous sections, but this was only for
very small values ofr. In practice r will be huge (i.e. at the very least ¥9),
and sincef ., is a function of degree approximately, it is not hard to see that
computing this function as we did in the previous examples impossible. In this

section we describe Miller's algorithm [Mil04], which malg this computation

very feasible. More precisely, the naive method of compugrf .» (Dg) that we
have been using has exponential complexi®(r), whilst the algorithm we are
about to describe for this computation has polynomial compkity O(logr). To
put it simply, Miller's algorithm makes pairings practical, without this algorithm,
secure cryptographic pairings would only be of theoreticahlue?.

We start by referring back to the discussion at the beginningf this chapter.
Following Equation (5.1), we saw that the divisor {,,p) = m(P) ([m]P) (m
1)(O) could be updated to the divisor {+1) =(m+21)(P) (m+1]P) m(O)
by adding the divisor (mp.p =Vim+1jp) = (P)+ ([m]P) (Im+1]P) (O);
this corresponds to the multiplication of functionsf .1 = fn “mpp:p =Mm+1yp-
Starting with fop =2(P) ([2]P) (O) then, we can repeat this process roughly
r 1 times to obtain the desired functionf., = r(P) ([r]P) (r 1)(O)=
r(P) r(O). We note that for the last step (i.,e. whenm = r 1) we have
fr op=(r L1)P) (r 1P) (r 2)(O), so the required divisor is P) +

2This is no longer entirely true. In 2007 Stange derived an akrnative method to Miller's
algorithm for e ciently computing the Tate pairing [Sta07] , but it is currently less e cient
than Miller's algorithm.

76 Chapter 5. Miller's algorithm for the Weil and Tate pairings

([r 1]P) 2(O) which corresponds to (a multiplication by!) the vertical ine
Vi 10 = V p = Vp, note that this is the same vertical line that appears on the
denominator of ', zp.p=V 15p. Thus, the pairing evaluation functionf .p is the
product

L' 3

[i]P;P | (53)

fr;P = \[r 2]P;P .
iy Vi+11P

The rst four sloped lines "[j;p.p and corresponding vertical linesyj.q;p from the
numerator and denominator of the product in (5.3) are showmiFigure 5.4 and
Figure 5.5 respectively. We have seen that the product in). is (in the most

PP

P;P

Figure 5.4: The rst four sloped lines Figure 5.5: The rst four vertical lines
in the product (5.3). in the product (5.3).

[mPP

naive way) built up incrementally by absorbing each of thqm terms into
fmp to increment to f.1.p, eventually arriving at f.p. Alternatively, it can
help to see the divisor sum written out in full, to see the comtbutions of each

5.3. Miller's algorithm 77

of the functions V[“% in the product all at once.
pp Ve o (P)+(P) ([2IP) (O)
‘wee=Mae - (P)+([2IP) (B]P) (O)

‘wepMap o (P)+(BIP) ([4P) (O)

It 4aPP=Vir 3P - (P)+({r 4P) (r 3P) (O)
Ir 3PPV 2P - (P)+(r 3P) (r 2P) (O)
It 2Pp (P)Y+([r 2P)+([r 1]P) 3(O)

When summing all of the above divisors, most of the inner terencancel out with
one another to leaver(1)(P)+([r 1]JP) r(O),andsincef 1P = P,
we get the divisor of the product being (P) r(O).

Roughly speaking,f.p = g(x;y)=h(x;y), where g and h are degreer func-
tions on E. The above method computes.r by successively increasing the
degrees ofy and h by one each timef ., is incremented. This is why, wherr
is (exponentially) large, this naive method has exponentizomplexity. Miller's
algorithm naturally overcomes this through the following bservation. The func-
tion f ., hasm zeros atP and (m 1) poles atO. Rather than adding one zero
and one pole via multiplyingf .0 by linear functions, we can double the number
of zeros atP and the number of poles a© if we instead squaref ., . Observe
that since fmp) = mM(P) (m]P) (m 1)(O), then

(fap)=2m(P) 2(m]P) 2(m 1)(O);
which is almost the same a$,n.p , whose divisor is
(famp) =2m(P) ([2m]P) (2m 1)(O);

the dierence between the two divisors beingfemp) (f25) = 2(ImM]P)
([2m]P) (O), which corresponds to a function with two zeros atmi]P, a pole
at [2m]P and another pole atO. We have seen such a function many times
already; this is simply the quotient of the tangent line at in]P and the vertical
line at [2m]P { the lines used to double the point in]P. Thus, we can advance

78 Chapter 5. Miller's algorithm for the Weil and Tate pairings

from f.p to fomp Vvia

(g2 _ImPimP,
2mP — I'mp .
Vi2mp

We depict the jump from f.p to fonp (&S opposed to the naive method of
progressing one-by-one) below.

[mlP ;P [m+1P ;P 2m 2P;P 2m 1P;P
Vv A\ Vv Vv
m+P [m+2]P T 2m 1P 2mpP
f2_ (mIPi[mJP
m;P Vi2m]P

Since, for anym, we can now advance to eithef ,,.1.p Or fomp quickly, Miller
observed that this gives rise to a double-and-add style algihm to reach f,.
in O(log(r)) steps. However, the degree df,.p grows linearly in the size ofm,
so (en route tom = r) the function f,., becomes too large to store explicitly.
Thus, the last piece of the puzzle in Miller's derivation of the pairing algorithm
was to, at every stage, evaluaté,p at the given divisor, i.e. f.p (Dg). This
means that at any intermediate stage of the algorithm we wilhot be storing
an element of the function eldf,r 2 Fy(E), but rather its evaluation at Dq
which is the valuef,p (Dg) 2 Fy. At each stage then, the updates that build
the function are evaluated atD o before being absorbed into intermediate pairing
value that is carried through the routine. This is summarise in Algorithm 5.1
below, where the binary representation of governs the double-and-add route
taken to computef.p (Dg), in an identical fashion to the standard double-and-
add routine for scalar multiplications onE (see Example 2.1.8).

Miller's algorithm is essentially the straightforward dounle-and-add algorithm
for elliptic curve point multiplication (see Example 2.1.8 combined with evalua-
tions of the functions (the chord and tangent lines) used inhe addition process.

Example5.3.1 (Magma script) We will compute both the Weil and Tate pairings
using Miller's algorithm. Let q = 47, E=F, : y? = x3+ 21x + 15, which has
E(Fg) = 51, so we taker = 17. The embedding degred with respect tor is
k = 4, thus take Fy = Fq(u) whereu* 4u?+5=0. The point P = (45;23) has
order 17 inE (Fg) which (becausek > 1) meansP 2 G; = E[r]\ Ker([1]). The
group order over the full extension eld is #E (Fq) = 3% 5* 172, so takeh = 33 5
as the cofactor. Taking a random point fromE (F4) and multiplying by h will

(almost always) give a pointQ 2 E[r], but it is likely to land outside of G, [G,

5.3. Miller's algorithm 79

Algorithm 5.1 Miller's algorithm.

Input: P 2 E(Fy)[r], D (Q) (O) with support disjoint from (fr.p),
andr =(rn 1:::rirg)e with rp, 1 = 1.
Output: f.p(Dg) f.

.R P,f 1.

2: for i= n 2downto Odo

3: Compute the line functions "r;r and vpyr for doubling R.

4: R [2R.

5: f f2 ﬁ Do).

6: if ry =1 then

7 Compute the line functions "r.p and vg+p for adding R and P.
8: R R+P.

9: ff v:fp (Dq).

10: end if

11: end for

12: return f.

so to move intoG, = E[r]\ Ker([d]), we can use the anti-trace map (see
Figure 4.4) and takeQ [K]Q Tr(Q). For example,Q = (31u?+29;35u°+11u)
is one of 17 points inG,. The Tate pairing is T, (P; Q) = f.p (Dg)@ D=, whilst
the Well pairing is w;(P; Q) = ;:Z EBS;. We will illustrate Miller's algorithm
to compute f.p (Do), since it appears in both. The binary representation of
risr =(1,;0,0;,0;1),. We will take Dg asDqg = ([2]Q) (Q), which clearly
has support disjoint to (f.p) and is equivalent to Q) (O). The table below
shows the stages of Miller's algorithm for computing p (Dg): it shows the

intermediate values ofR, and of the function '=v which corresponds toﬁ or

% depending on whether we are in the doubling stage (steps 34Adgorithm
5.1) or the addition stage (steps 6-10 of Algorithm 5.1); théable also shows
the progression of the paired valué. To complete the Tate pairing, we compute

i/ |steps of| point | update |update at[2]Q = “(Dg) = "=v(2]Q) paired
ri |Alg. 5.1| R =v update at Q v(Dg) =v(Q) value f
1 |(45;23) 1
_ . +33 x+43 | 20u3+21 uZ+9 u+4 _ 3 3
3=0| 35 |(12;16)[Y=332 6u3“+31+9 u;';;é - =410 +32u% +2u+21 | 415 +32u2 +2u+21
_ _ . y+2 x+7 40u°+18 U“+38 U+9 _ 3 2 3 2
2=0| 35 |(27;14)] 550 39u33+8u2+20 Geis - 4US+5uc+28u+17 |22u° +27u +30u +33
_ . y+42 x+27 | 29u°+15 u2+8 u+14 _ =3 2 3 2
1=0| 3-5 |(18;31)|I 555, lBu“3§32 uui+4l g5 = 6ud+13u%+33u+28|36u+2u®+21u+37
_ _ . y+9 x+42 | 10uS+3 u’+14 u+19 _ 3 2 3 2
0=1 3-5 |(45;24)| — 5 5103726 uZ+25 uspo — 46U° +45u° + u+20 |10u® +21u” +40u +25
6-10 o) X +2 JU2 = 6u+43 17ud +6u2 +10u +22
12 fop (Do) 17U +6uZ+10u+22

t,(P;Q) = frp (D)™ D = (17UB+6U?+10u+22) 287040 = 3313+43u%+45u+39.

80 Chapter 5. Miller's algorithm for the Weil and Tate pairings

For the Welil pairing, we require another run of Miller's algaithm, this time
reversing the roles oP and Q to computef.q (Dp) = 2u?+6u+40, which gives
the Weil pairing asw; (P; Q) = :; EBS; = IWBoulH0ur22 = 97 3+12u2+32u+13.
Notice that, in line with Equation 5.3 (and the preceding disussion), the vertical
line x + 2 = 0 that corresponds to the nal addition in this example appears in
the denominator of the previous =v function used for the doubling, and could
therefore be cancelled out. We will see that this occurs ingeral, and is perhaps
the least signi cant of many improvements to Miller's initial algorithm that have
accelerated pairings over the last decade. Indeed, in Chapt7 we will be looking

at several more major optimisations to Miller's algorithm.5.1.

5.4 Chapter summary

We started with the more simple description of the Weil paing, before moving
to the de nition of the Tate pairing. This is because both theelliptic curve
groups in the raw de nition of the Weil pairing are torsion suogroups, which
were discussed at length in the previous chapter. On the othkand, one of the
groups in the general Tate pairing de nition required us tomtroduce the quotient
group E (Fq)=rE(F4). However, we soon showed that (for cases of cryptographic
interest) it is no problem to represent this quotient group g a torsion subgroup,
thereby unifying the group de nitions needed for the Weil ad Tate pairing and
solidifying the choices ofG; = E[r]\ Ker([1]) and G, = E[r]\ Ker([q]),
which will be standard for the remainder of this text. We sawltat at the heart
of both the Weil and Tate pairings is the computation of the paing evaluation
function f.p (D), where P 2 E and D is an appropriately de ned divisor on
E. We nished the chapter by presenting Miller's algorithm, which is the rst
practical algorithm to compute f.p (D) for cases of cryptographic interest, and
which remains the fastest algorithm for computing pairingso date.

Chapter 6

Pairing-friendly curves

To realise pairing-based cryptography in practice, we neddo things [Sco07a]:
- e cient algorithms for computing pairings; and

- suitable elliptic curves.

The former was briey outlined in the last chapter (and will be taken much
further in the next), whilst this chapter is dedicated to thelatter.

6.1 A balancing act

Pairings are fundamentally di erent to traditional number-theoretic primitives,
in that they require multiple groups that are de ned in di er ent settings. Namely,
G, and G, are elliptic curve groups, whilstGt is a multiplicative subgroup of a
nite eld. All three groups must be secure against the respeive instances of
the discrete logarithm problem, which means attackers carrdak the system by
solving either the DLP in Gt or the EDCLP in G; or G,. As we discussed in Sec-
tion 2.1, elliptic curve groups currently obtain much greagr security per bit than
nite elds; this is because the best attacks on the ECDLP rerain generic at-
tacks like Pollard rho [Pol78] which have exponential comekity, whilst the best
attacks on the DLP have sub-exponential complexity. In othewords, to achieve
the same security, a nite eld group needs to have a much gréar cardinality
than an elliptic curve group. Itis standard to state the compexity of asymmetric
primitives in terms of the equivalent symmetric key size. Foexample, the most

81

82 Chapter 6. Pairing-friendly curves

recent ECRYPT recommendations (sebttp://www.keylength.com/en/3/) say
that to achieve security comparable to AES-128 (i.e. 1284lsecurity), we need
an elliptic curve group of approximately 256 bits and a nite eld of approxi-
mately 3248 bits. We give an example of a curve in the context pairings for
which G;, G, and Gt meet these particular requirements.

Example6.1.1 (Magma script) Let E=F;: y?> = x3+ 14 be the curve with order
E (Fy) having large prime factorr, whereq and r are given as

q = 421943326900167228539204394914103813941511244 PA%A4 251381287775317
505016692408034796798044263154903329667 (369 ;bits)

r = 22369706110757867895038827365786278856103000382043851391137376569
980702677867 (271 bits)

The embedding degree ik =9, i.e. ¢ 1 0 modr. Thus, the two elliptic
curve groupsG; 2 E[r] and G, 2 E[r] have an order of 271 bits, which meets the
current requirements for 128-bit security. AlthoughG+ is a subgroup of order
r (in Fqk), the attack complexity is determined by the full size of theeld Feg,
which is 3248 bits, also meeting the requirements for 128kseecurity.

We discuss an important point with reference to the above ergple. Namely,
if we were to use primesg|andr of the same bit-sizes as Example 6.1.1, but which
corresponded to a curve with a larger embedding degriðen this would not
increase the security level o ered by the pairing. For exame, even though
k = 18 gives a nite eld of 6496 bits, which on its own correspods to a much
harder DLP (175-bit security), the overall complexity of attacking theprotocol
remains the same, because the attack complexity of the ECDL#s not changed.
Such an increase irk unnecessarily hinders the e ciency of the pairing, since
the most costly operations in Miller's algorithm take placein Fy. Thus, the
ideal approach is to optimise the balance betweenand Fy so that both can be
as small as possible whilst simultaneously meeting the pantilar security level
required. This was achieved successfully in our example, evh F was exactly
the recommended size, and was only a few bits larger than what is needed to
claim 128-bit security.

1The \half-the-size" principle between elliptic curve groups and the equivalent asymmetric
key size is standard [ﬁmaleG.l], since attacks against elliptic curves with orderr subgroup
have running time O(" r). Obtaining the equivalent nite eld group size is not as tr ivial {
see [Smal0x6.2].

6.1. A balancing act 83

Nevertheless, we can still obtain a signi cant improvemenbn the parame-
ters used in Example 6.1.1; we can keep all three group sizée tsame, whilst
decreasing the size of the base el#,. The Hasse bound (see Eq. (2.6)) tells
us that the bit-length of # E and the bit-length of g will be the same. Thus,
it is possible that we can nd curves de ned over smaller eld whose largest
prime order subgroup has the same bit-size as that in Exampéel.1, and whose
embedding degree is large enough to o set the decreasegiand therefore that
the corresponding full extension eld also meets the sectyirequirements. We
give a \prime" example.

Example 6.1.2 (Magma script) Let E=F,: y? = x®+ 2 be the curve with prime
orderr = # E(F,), whereq andr are given as

g =287578801648237372840212049800655234673772199888E65427519263513769
64733335173 (271 bits)

r = 287578801648237372840212049800655234673766837UTBI®8963148984065605
60716472109 (271 bits)

The embedding degree ik = 12,i.e. ¢* 1 0 modr, giving Fqz as a 3248-bit
eld, which is exactly the same size as th& =9 curve in Example 6.1.1. Thus,
G1, G, and Gt have orders of the same bit-lengths as before, but using tlusrve
instead means that arithmetic inF, will be substantially faster; a 271-bit eld
in this case, compared to 369-bit eld in the last.

In light of the di erence between Example 6.1.1 and Example.6.2, an im-
portant parameter associated with a curve that is suitabledr pairings is the
ratio between the eld sizeq and the large prime group order, which we call
the -value, computed as

_ logg,

~ logr’
Referring back to the two curves above, we have= :g% = %ﬁ = 1:36in Example
6.1.1, whilst = 299 = 21 = 1 5 Example 6.1.2. The -value essentially

indicates how much (ECDLP) security a curve o ers for its el size, and since we
generally prefer the largest prime divisor of # E to be as large as possible,= 1
is as good as we can get. Indeed, the curve in Example 6.1.2twit= 1 belongs to
the famous Barreto-Naehrig (BN) family of curves [BNO5], wibh all havek =12
and for which the ratio between the sizes afand F make them perfectly suited

84 Chapter 6. Pairing-friendly curves

to the 128-bit security level. This ratio between these grqusizes is k (i.e.

|quk _ |qu . . .
ogr = k W)’ so for commonly used security levels, Figure 6.1 gives thialue

of k that balances the current attack complexities of the DLP andcECDLP.

Di erent information security and/or intelligence organisations from around the

b

N w
o o
\ \

k (ECDLP and DLP balanced)
H
o
|

0— J J] j j j j j j j
647280 96 112 128 160 192 224 256
Security level (bits)

Figure 6.1: The value of k that balances the complexity of the DLP and
ECDLP for commonly used security levels.

globe, such as NIST (the USA) and FNISA (France), give slight di erent key
size recommendations and complexity evaluations of the algthms involved; all
of this information is conveniently collected athttp://www.keylength.com/
We have chosen to generate Figure 6.1 according to the numben the (most)
recent ECRYPT Il report [Smal0], which is also summarised #re.

Having seen two examples above, we are now in a position to de apairing-
friendly curve. Following [FST10], we say that a curve is pairing-fendly if the
following two conditions hold:

there is a primer P q dividing # E (F,) (i.e. 2), and
the embedding degre& with respect tor is less than log(r)=8.

Thus, in their widely cited taxonomy paper, Freemanet al. [FST10] consider
pairing-friendly curves up tok = 50, which is large enough to cover recommended
levels of security for some decades yet.

Balasubramanian and Koblitz [BK98] show that, forg of any suitable cryp-
tographic size, the chances of a randomly chosen curve o¥gy being pairing-

6.2. Supersingular curves 85

friendly is extremely small. Speci cally, they essentiayl show that the embedding
degree (with respect tor) of a such a curve is proportional to (and therefore is
of the same order asy, i.e. k r. Very roughly speaking, such an argument
is somewhat intuitive since (for a random curve) # can fall anywhere in the
range ff+1 oP g;9+1+2 P ql, sor can be thought of as independent odj,
meaning that the order ofq in Z, is random (but see [BK98] for the correct
statements). Therefore, imposing thak is small enough to work with elements
in Fg is an extremely restrictive criterion, so one can not hope teucceed if
randomly searching for pairing-friendly curves amongst hitrary elliptic curves.
Thus, in general, pairing-friendly curves require very sg&l constructions.

In Section 6.2 we brie y discuss supersingular elliptic cues, which always
possess embedding degreks 6 [MOV93, x4], and (so long as pq) are
therefore always pairing-friendly. Referring back to Figre 6.1 though, we can
see that havingk > 6 is highly desirable for e cient pairings at the widely
accepted security levels, and thus in Section 6.3 we focus the ordinary (non-
supersingular) case and outline the constructions that awve pairing-friendly
curves withk > 6.

6.2 Supersingular curves

Recall from Section 4.1 that an elliptic curveE is characterised as supersingular
if and only if a distortion map exists onE. There are essentially ve types
of supersingular curves that are of interest in PBC [Gal05, able 1X.1], but
here we will only mention two. This is because we are only caraed with
prime elds in this text, and the other three are either de ned over Fyz, Fom Or
Fsm. As Galbraith mentions, a problem in characteristic 2 and 3sithat there is
only a small number of curves and elds to choose from, so theers an element
of luck in the search for a curve whose order contains a largeirpe factor.
Another problem in small characteristic is that there existenhanced algorithms
for discrete logarithms (see [Gal05, Ch. IX.13]).

All supersingular curves over large prime elds have E(Fy) = g+ 1, from
which it follows that k = 2, i.e. regardless of the prime factor 6 2, r j g+ 1
impliesr -q 1lbutrjg® 1. We have already seen examples of the two popular
supersingular choices in Section 4.1, whose general formes given in Table 6.1.

We give another example of both cases below, but we choose ga@ameter

86 Chapter 6. Pairing-friendly curves

q | E | distortion map | e.g.
2mod 3y’ = x3+ b| (x;y) 7! (3xX;y), 5=1 |[Eg. 4.1.4 (Fig. 4.5)
3 mod 4y? = x3+ ax|(x;y) 7! (x;iy), i?= 1Eg. 4.1.5 (Fig. 4.6)

Table 6.1: The two types of popular supersingular curves avprime elds.

sizes to serve another purpose: to show how important it is @mploy ordinary
curves with higher embedding degrees.

Example 6.2.1 (Magma script) We will chooseq 11 mod 12 so we can de ne
both examples in Table 6.1 over the same eld, but also so thahe security of
these curves in the context of PBC matches the security of theurve with k = 12
in Example 6.1.2. For the ECDLP security to be 128 bitsy still only needs to

be 256 bits in size. However, sinde= 2, for Fy to be around 3248 bitsq needs
to be around 1624 bits:

0 =425708693169757088196017853607835113595127103882483053126328324440
325187294980298286003853193096586789044465822218B48835844920246377
627993918075696691248142532709473662265150648126859204494611177526
5960152579840098145960571603886722983558213090846788611172149560183
591338183588017093431989042089552132043993066630258095626692438477
66834546592867695533445054256132471093279787853298@394176521193456
2055703096584622042345577283736153041933169164@048P4612327

ConsiderE,=F : y? = x3+ 314159 andE,=F, : y* = x®+265358. Both curves
have order #E,(F,) =# E»(Fq) = gq+1 = hr, whereh is a 1369-bit cofactor and
r is the 256-bit prime given as

r =578960446186580977117854925043439539266349923 282901 97287920039565
64820063

The distortion maps are de ned overF = Fq(i), wherei?+1 =0 { see Table
6.1 or Examples 4.1.4 and 4.1.5. The huge size gfstresses the importance
of adhering to the optimal ratio of k suggested by Figure 6.1. A rough
but conservative approximation of the complexity of eld mudtiplications in the
1624-bit eld, compared to the 271-bit eld in Example 6.1.2gives a ratio of
at least 25 : 1. Referring back to the discussion of pairing s in Section 4.2,
this gives some idea of the computational price one pays wharsisting on the

6.3. Constructing ordinary pairing-friendly curves 87

computability of (as well as the other desired properties o ered by a Type 1
pairing), rather than adopting a Type 3 pairing and trustingin the heuristics of
Chatterjee and Menezes in the absence of such §CM09, Men09].

We round out this section by remarking that although supersigular elliptic
curves are limited tok 6, Rubin and Silverberg give a practical way to obtain
larger values ofk using Weil descent [RS02]. Alternatively, one can employ a
higher genus supersingular curve to obtain a higher embeddi degree [Gal0O1,
RS02]. As Galbraith remarks however, there are severe e ciey limitations
in both scenarios, and we achieve faster pairings in practidy using ordinary
pairing-friendly elliptic curves [Gal05, Ch. IX.15].

6.3 Constructing ordinary pairing-friendly curves

There are three main methods of constructing ordinary paimg-friendly elliptic
curves. The two most general methods, the Cocks-Pinch [CAC4nd Dupont-
Enge-Morain [DEMO5] algorithms, produce curves with = 2, which is more
often than not undesirable when compared to the-values obtained by the third
method. Moreover, the third method encompasses all constitions that produce
families of pairing-friendly elliptic curves, which have been the nsi successful
methods of producing curves that are suitable for current ahforeseeable levels
of security.

All of the constructions in the literature essentially folow the same idea: x
k and then compute integers, r, g such that there is an elliptic curveE=F, with
trace of Frobeniust, a subgroup of prime order, and an embedding degrek.
The complex multiplication method(CM method) of Atkin and Morain [AM93]
can then be used to nd the equation oE, provided the CM discriminant D of
E is not too large: D is the square-free part of ¢ t?, i.e.

Df 2=4q t% (6.1)

for some integerf . Equation (6.1) is often called the CM equation ok, and by
\ D not too large" we meanD is less than, say 1 [Sut12].

In 2001, Miyaji, Nakabayashi and Takano [MNTO1] gave the rsconstruc-
tions of ordinary pairing-friendly elliptic curves. Their method has since been
greatly extended and generalised, but all of the construcis of families essen-
tially followed from their idea, which is aptly named the MNT strategy or MNT

88 Chapter 6. Pairing-friendly curves

criteria [FST10, Gal05]. For some special cases, Miyagt al. used the fact that
if k is the (desired) embedding degree, themj g¢ 1 impliesr j (q), since the
k-th cyclotomic polynomial (x) is the factor of x 1 that does not appear
as a factor of any polynomial X' 1) with i < k [Gal05, 1X.15.2]. For these
cases they were also the rst to parameterisamilies of pairing-friendly curves,
by writing t, r and g as polynomialst(x), r(x) and g(x) in terms of a parameter
X. Miyaji et al. focussed on embedding degre&s= 3;4;6 and assumed that
the group order was to be prime, i.er(x) = g(x)+1 t(x) (from (2.6)). They

proved that the only possibilities fort(x) and g(x) (and hencer (x)) are

k=3: t(x)= 1 6x and q(x)=12x> 1;
k=4: t(x)= x;x+1 and q(x)= x>+ x+1;
k=6: t(x)=1 2x and q(x)=4x%+1:

Example 6.3.1 (Magma script) We kick-start a search for ak = 4 (toy) MNT
curve with x = 10, incrementing by 1 until g(x) = x?+ x +1 and r(x) =
g(x)+1 t(x) (with either of t(x) = x ort(x) = x+1) are simultaneously prime.
At x =14, both g= q(x) =211 andr = r(x) = 197 (with t(x) = x+1) are prime,
so we are guaranteed an elliptic curvE=F, with r points and embedding degree
k=4 (notice @ 1 0modr). The CM equation yieldsDf 2=4q t?=619,
which itself is prime, sof = 1 and thus we seek a curve oveFq with CM
discriminant D = 619. The CM method produces one such curve &-F : y? =
x3+112x +19. Notice that 4(q(x)) = q(X)?+1=(x2+1) (x*>+2x+2), both
factors being the possibilities for (x).

: — | — log211 _ 4.
Notice that the toy example above has = % = |83197 = 1:01. Forx of

cryptographically large size though, we will get = 1 since q(x) = x?+ x +1
and r(x) = x>+ 2x+2 or r(x) = x?>+ 1 have the same degree. In general

parameterised families then, we use the degreesgfx) and r (x) to state as

_ deg@(x)) .
deg((x))’

A number of works followed the MNT paper and gave useful geradisations of
their results. In particular, we mention the work by Barretoet al. [BLS02], Scott
and Barreto [SB06], and Galbraithet al. [GMVO07], all three of which obtain more
parameterised families by relaxing the condition that the ipup order is prime

6.3. Constructing ordinary pairing-friendly curves 89

and allowing for small cofactors so that # = hr. Another observation made by
Barreto et al. that somewhat simpli es the process is the followingr j (g) and

g+l t Omodr combine to give that (t 1) O modr [BLS02, Lemma
1]. Substituting hr = g+1 t into the CM equation in (6.1) gives

Df 2=4hr (t 2)% (6.2)

In Section 3.1 of [BLS02], Barretet al. obtain many nice parameterised families
for variousk by considering a special case of the above equation wiflx) = x+1,
D =3 and (sincer | «(x)) nding f(x) and m(x) to t

3 (x)2=4m(x) «(x) (x 1)% (6.3)

We note that curves with CM discriminant D = 3 are always of the formy? =
x3+ b. A convenient solution to Equation (6.3) fork =2' 3ism =(x 1)°=3
andf (x) =(x 1)(2x* 1)=3, for which we can taker = (x). Taking i = 3,
we give a cryptographically useful example of a BLS (Barretbynn-Scott) curve
with k = 24.

Example6.3.2 (Magma script) Following the above description, the BLS family
with k = 24 is parameterised ag|(x) = (x 1)?(x® x*+1)=3+x,r(X) = 24(X) =
x® x*+1,t(x) = x+1. The family has = G} = 10=8 = 1:25 and therefore

k = 30. Referring back to Figure 6.1, we see that such a curve gw a nice
balance between the sizes ofand ¢ (the ECDLP and DLP) for pairings at the
256-bit security level. Indeed, at present this family remas the front-runner
for this particular security level [Scoll,CLN11]. To nd a arve suitable for this
level, we need to be about 512 bits, and since deg(x)) = 8, we will start the
search forq, r both prime with a 64-bit value; note that x 1 mod 3 makes
q(x) an integer, so the rst such value isx = 253 + 2. After testing a number of
incrementalx X + 3 values, x = 9223372036854782449 givegéx) and r(x) as
629 and 505 bit primes respectively. Sind® = 3 and E=F; :y* = x3+ b i.e.
there is only one curve constant, we do not need to use the CM thed. Instead,
it is usually quicker to try successive values dj until we nd the correct curve.
In this case,b= 1 gives E=F, : y? = x3 + 1 as our pairing-friendly k = 24 BLS
curve.

Barreto et al. [BLS02, x3.2] actually give a more general algorithm which,
instead of insisting thatt = x + 1, takest = x' + 1. Brezing and Weng [BW05]

90 Chapter 6. Pairing-friendly curves

found even more useful families by searching with more geakpolynomials
for t(x). Several constructions followed by looking for parametmsations that
satisfy the following conditions which de ne a family [FSTD, Def. 2.7] (also
see [Fre06, Def. 2.5]):

() r(x) is nonconstant, irreducible, and integer-valued with a psitive leading
coe cient.

(i) r()jax)+1 t(x).
(i) r()j w(tx) 1)

(iv) The parameterised CM equationDf 2 = 4q(x) t(x)? has in nitely many
integer solutions ;).

Referring to condition (iv) above, we say that a family pararaterised by
(t(x), r(x), q(x)) is a completefamily if there exists f (x) 2 Q[x] such that
Df (x)?2 =4q(x) t(x)?. Otherwise, we say the family isparse We have already
seen a curve belonging to the popular Barreto-Naehrig (BNammily in Example
6.1.2. In the following example we look at the BN paramete@asions in terms of
the above conditions.

Example 6.3.3 (Magma script) Barreto and Naehrig [BNO5] discovered that, for
k = 12, setting the trace of Frobeniust to bet(x) = 6x?+1 gives 1,(t(x) 1) =
12(6x2) = (36 x* + 36x3 + 18x2 + 6x + 1)(36x* 36x3+18x2 6x +1). This
facilitates the choice ofr (x) as the rst factor r(x) = 36x*+36x3+18x?+6x+1,
from which taking q(x) as g(x) = 36x*+36x°+24x?+6x+1 means not only that
r(x)jgx)+1 t(x) (condition (ii) above), but in fact that r(x) = q(x)+1 t(x).
Thus, whenx is found that makesr (x) and q(x) simultaneously prime, we have
a pairing-friendly curve with k = 12 that has prime order. Not only is the -
value =1 ideal, but there are many more reasons why BN curves havecesved
a great deal of attention [DSDO07, PJNB11, AKL 11]. Notice that D = 3 and
f (x) = 6x2+4x +1 satis es the CM equation (condition (iv) above), so the BN
family is a complete family and BN curves are always of the fory? = x3 + b.

The last point of Example 6.3.3 is a crucial one. Referring bk to Section
4.3, we know thatD = 3 curves of the formy? = x3 + b admit cubic and sextic
twists. Thus, in the case of BN curves wherk = 12, we can make use of a sextic
twist to represent points in G, 2 E(Fq2) as points in a much smaller sub eld
on the twist, i.e. in (Gy) = G) 2 EYFg). In general then, whenk has

6.3. Constructing ordinary pairing-friendly curves 91

the appropriate factord 2 f 3;4;6g, we would like to make use of the highest
degree twist possible, so we would prefer our pairing-frigly curves to be of the
following two forms:

degreed curve |j-invariant |CM discriminant| eld
36jk|y?=x3+Db| j(E)=0 D=3 q 1mod3
4jk |y?=x3+ ax|j(E) = 1728 D=1 q 1mod4

Table 6.2: Pairing-friendly elliptic curves admitting high-degree twists.

See [Sil09][p. 45] for the de nition of thg -invariant of an elliptic curve (and
the associated calculations); we simply remark that two dfitic curves E=F and
E=F, are isomorphic overF, if and only they have the samg -invariant. Due
to the preferences in Table 6.2, our discussion will reallynty be dealing with
curves ofj -invariants (respectively CM discriminants)j 2 f 0; 1728) (respectively
D 2 f 3;1g). In this respect, we are also very fortunate that most of thdest
constructions of pairing-friendly families have eitheD =1 or D = 3, depending
on the embedding degree they target. In general, a severeslas e ciency is
su ered in pairing computations when choosing a curve that@es not o er a
high-degree twist, so at any particular security level we ted to focus on the
curves whose embedding degrees are suitable, both accogdion Figure 6.1 and
which containd 2 f 3;4; 69 as a factor [FST10,x8.2]. Besides, as we will see in
the next chapter, there are further e ciency reasons that hapily coincide with
having d j k for d 2 f 3;4;6g9. The equivalence conditions omg in Table 6.2 are
to ensureE is ordinary, complementing the supersingular cases in Tabb.1.

Our last example in this chapter belongs to another complefamily from the
more recent work of Kachisa, Schaefer and Scott [KSS08], wpesent record-
breaking (in terms of the lowest -value) curves for embedding degreds 2
f 16, 18; 36; 40g.

Example 6.3.4 (Magma script) We choose a KSS curve witlk = 16, which is
parameterised byt(x) = (2 x° + 41x + 35)=35, q(x) = (x'° + 2x° + 5x8 + 48x° +
152° + 240x* + 625x2 + 2398x + 3125)=980 andr (x) = (x&+48x*+ 625)=61250.
This family has = 5=4, so referring back to Figure 6.1 we see that k =20 is
a nice t for pairings at the 192-bit security level. Thus,r should be around 384
bits, so starting our search withx around 2° should do the trick (we add the
extra two bits to account for the 16-bit denominator ofr(x)). The polynomials
for g(x) and t(x) can only take on integers ifx 25 mod 70, so we start

92 Chapter 6. Pairing-friendly curves

with X 20+ 21 25 mod 70 and iterate accordingly. We soon arrive at
x = 1125899907533845, which gives a 491-hias

0 =334019451835958707560790451450434857813058164 B3@1G 64289981004286
7643534741048241225178436682317003010155280705838836822134128050
5964970897

and a 385-bit prime factorr of # E(F,) as

r =4215918189011304280250800671237881596873006 793834 44855809536163
40927802229320181495643594147646077933909121633

Again, we do not need the CM method to nd the curve: we simplytart with
a=1in y2= x3+ ax and increment until we nd a = 3 which gives the correct
curve asE=F, : y? = x3+3x. E has embedding degree 16 with respect tg so
the full extension eld Fy is 7842 bits.

We nish this chapter with two important remarks.

Remark 6.3.1 (Curves for ECC vs. curves for PBC)At the highest level, nd-

ing curves that are suitable for ECC really imposes only oneondition on our
search, whilst nding curves that are suitable for PBC imposs two: in ECC we
only look for curves with large prime order subgroups, whiilsn PBC we have
the added stipulation in that we also require a low embeddindegree. Whilst
one can search for suitable curves for ECC by checking \ranahd curves until

we come across one with almost prime order, in PBC we requirery special
constructions (like all those discussed in this chapter) #t also adhere to the
extra criterion { as we have already discussed, we can not eegi to nd any

pairing-friendly curves by choosing curves at random [BK98 A major conse-
quence is that in ECC we can specify the underlying eld; however we like
before randomly looking for a suitable curve over that eld.In this case elds
can therefore be chosen to take advantage of many low-levgtimisations; for
example, Mersenne primes achieve very fast modular multightions which blows
out the relative cost of inversions. On the other hand, in PBGve are con ned
to the values taken by the polynomialsg(x) and have limited control over the
prime elds we nd. Thus, we are not a orded the luxury of many low-level
optimisations and this drastically a ects the ratios betwen eld operations (in-
versions/multiplications/squarings/additions). For example, whilstFy-inversions

6.4. Chapter summary 93

in ECC are commonly reported to cost more than 8B,-multiplications, the ratio
in the context of PBC is nowhere near as drastic [LMN10,AKL11]. This means
we often have to rethink trade-o s between eld operations hat were originally
popularised in ECC.

Remark 6.3.2 (Avoiding pairing-friendly curves in ECC) In the previous remark
we said that in ECC we only need to satisfy one requirement (éhlarge prime
subgroup), but this is not the full story. In fact, in this context we prefer to
choose curves that are strictly not pairing-friendly. Afte all, in ECC there is no
need for a low embedding degree, so choosing a curve that (aoessarily) has one
gives an adversary another potential avenue for attack. Irgkd, exploiting curves
with low embedding degrees in the context of ECC was the rstse of pairings
in cryptography { the famous Menezes-Okamato-Vanstone (M@ [MOV93] and
Frey-Ruck (FR) [FR94] attacks. Thus, so long as we avoid sugrsingular curves,
the heuristic argument [BK98] tells us that the curves we ctase at random will
have enormous embedding degrees with overwhelmingly higlopability, so this
is not a restriction in the sense of Remark 6.3.1.

6.4 Chapter summary

We stressed the importance of nding elliptic curves with lege prime order
subgroups and small embedding degrees, i.e. pairing-frigncurves. We showed
that supersingular curves, whilst easy to nd, severely libh the e ciency of
pairing computations, particularly at moderate to high lewels of security, because
they are conned tok 6 (andk 2 over prime elds). Thus, we turned our
focus to the more di cult task of constructing ordinary pairing-friendly elliptic
curves, and summarised many landmark results that have enmzed this arena
over the last decade. In particular, we gave examples of sowfehe most notable
families of pairing-friendly elliptic curves, some of whit have already become
widespread in real-world implementations of pairings.

94

Chapter 6. Pairing-friendly curves

Chapter 7

The state-of-the-art

This chapter summarises the evolution of pairing computatn over the last
decade. We illustrate the landmark achievements that acezhted early im-
plementations of pairings from \a few minutes" [Men93]into current implemen-
tations that take less than a millisecond [AKL 11].

Initial improvements in pairing computations were spearheded by evidence
that computing the Tate pairing f .p (DQ)(qk D" is more e cient than computing
the Weil pairing f.p (Dg)=f..o (Dp). At rst glance it seems that comparing the
two computations amounts to comparing an exponentiation byg< 1)=r to a
(second) run of Miller's algorithm f .o (Dp), and indeed, at levels of security
up to 128 bits, this comparison does favour the Tate pairingc{. [SCA06, Tab.
1-5], [Sco07c]). However, as we will see in Section 7.1, exgraiating by (g
1)=r actually facilitates many \Tate-speci c" optimisations within the associated
Miller loop. It is these enhancements that gave the eld of pang computation
its rst big boost.

7.1 Irrelevant factors (a.k.a. denominator elim-
ination)

In this section we will work our way to a re ned version of Miler's algorithm
for pairings over large prime elds, which is mostly due to improvements sug-

1As Scott says however, this comparison is unfair { in 1993 thee was no incentive to try
and optimise the computation past what was needed to apply tle MOV attack [MOV93].

95

96 Chapter 7. The state-of-the-art

gested by Barreto, Kim, Lynn and Scott [BKLS02], and also pdlly due to Gal-
braith, Harrison and Soldera [GHS02]. Thus, it is often refeed to as the
BKLS algorithm [Sco05a, WS07], or sometimes as the BKLS-GH&gorithm
[Sco05b, BGOSO07]. Our exposition will make use of twisted rves, which we
discussed in Section 4.3 and the employment of which is origlly due to Bar-
reto, Lynn and Scott [BLS03]. The early works that included Brreto, Lynn and
Scott are also culminated in [BLS04].

We start with an observation that allows us to conveniently eplace the divisor
Dq with the point Q in the Tate pairing de nition. Namely, so long ask > 1
and P and Q are linearly independent, thenf.p (Do) D= = f.p (Q)(@ D=
[BKLSO02, Th. 1]. This saves the hassle of de ning a divisor etyalent to Dq =
(Q) (O) with support disjoint to (f.p), but more importantly allows us to
simply evaluate the intermediate Miller function at the pont Q (rather than two
points) in each iteration of Algorithm 5.1.

Example 7.1.1 (Magma script) We reuse the parameters from Example 5.3.1
S0 a comparison between intermediate values is possible. ushlet q = 47,
E=Fq:y? = x3+21x+15, # E(Fg) = 51, r = 17, k = 4, Fu = Fq(u) with
u* 4u?+5=0, P =(45;23)2 G; and Q = (31u? + 29;35:% + 11u) 2 Go,.
Thus, the Tate pairing is e(P; Q) = f.p (Q)(D= = (32u3 + 17u? + 43u +

i/ |steps of| point | update update at Q paired
ri |Alg. 5.1| R =v (Q)=v(Q) value f
1 |(45;29) 1
3=0| 3-5 |(12;16) y+§3+§5+43 35us+g$uu22+1171 utld - 5y3 +19u?2 +36u+33 |6ud +19u2 +36u+33
3 Z
2=0| 3-5 |(27;14) V23T | 3utBu HLUMS - 394% +8u2 +20u +18 [11u +17u +24u+4
3 2
1=0| 3-5 |(18;31)[Y*42x+27 |36uT33 T U2 = 183 4+ 3202 + 41U +30 | 22u3 +34u? +5u + 10
0=1] 35 |[(45;24)[¥XOX#2 [3BuTAUTHL UL = 913 4 26u2 +25u +20| BuS +22u2 +5U +27
6-10 o] X+2 =31u?2+31 3208 +17u?2 +43u +12
12 frp (Q) 32 +17u?+43u+12

12)?87040 = 33u8 + 43u? + 45u + 39, which is the same value we got when instead
computing f.p (Do) = frp ([2]Q)=f.p (Q) in Example 5.3.1. When comparing
the fth columns of both tables, one should keep in mind that he numerator and
denominator of the fractions in Example 5.3.1 were themsels both computed
as fractions. Indeed, updates in this example are just the deminator of the
updates in Example 5.3.1, which gives an indication of how wantageous it is
to evaluate the pairing functions at one point (e.g.Q), rather than at a divisor
consisting of multiple points (e.g. ([2Q) (Q)). Notice that the valuesf.p (Dg)
andf .p (Q) output after the Miller loops in both examples are not the sae, but

7.1. Irrelevant factors (a.k.a. denominator elimination) 97

the nal exponentiation maps them to the same element in ;7. This is because
frp (Do) and f.p (Q) lie in the same coset oflqu)r in Fqk, l.e. they are the same
element in the quotient groupF :(Fqk)r.

We are now in a position to describe the importandenominator elimination
optimisation. Barreto et al. were the rst to notice that q 1] (d¢ 1)=r
[BKLS02, Lemma 1], since if j @ 1 then the embedding degree would be= 1.
This allows us to write the nal exponent as ¢¢ 1)=r=(q 1) c, which gives
frp (Q) D= = (.5 (Q)% 1)°, meaning that any elements of, contributing to
frp (Q) will be mapped to one under the nal exponentiation. Thus, ae can
freely multiply or divide f . (Q) by an element off, without a ecting the pairing
value [BKLS02, Corr. 1]. When working over supersingular cwes with k = 2,
the x-coordinate ofQ is de ned over F, (see any of Examples 4.1.4, 4.1.5 ,4.3.1,
5.2.1). Therefore, the vertical lines appearing on the denonators of Miller's
algorithm for the Tate pairing are entirely de ned overF,: the line is a function
X Xgr that depends onP 2 E(Fg)[r], which is evaluated atxq 2 Fq. Thus, in
this case the contribution of (each of) the denominators .. (Q) ends up being
mapped to 1 under the nal exponentiation, so these denomitars (the v's in
the "=v's { see Steps 5 and 9 in Algorithm 5.1) can be removed from theil\dr
loop.

For ordinary curves with k > 2 however, thex-coordinate ofQ will no longer
be in the base eldFg, but in some proper sub eldFq of Fy, wheree = k=dand
d is the degree of the twist employed{ see Section 4.3. Here it helps to assume
that k is even, i.e.k =27, so that (at the very least) we can takeQ = (Xq;Yo)
where xo 2 Fy is such thatyy 2 Fy nFy. Thus, when advancing beyond
k = 2 supersingular curves, Barretoet al. generalised the original statement
to facilitate the same trick. Namely, that® 1j (d¢ 1)=r for any proper
factor e j k [BLS03, Lemma 5, Corr. 2], so denominators can be omitted fro
computations in general.

Example 7.1.2 (Magma script) Again, we will continue on from Example 7.1.1
for the sake of a convenient comparison. We simply give an ugiéd table that
details the intermediate Miller functions and pairing vales subject to denomi-
nator elimination. Therefore, e(P; Q) = f.p (Q)(V=" = (9u3+ 10u? + 32u +
36)@ =" = 33u3 + 43u? + 45u + 39, which agrees with the Tate pairing value

2When d = 3 cubic twists are able to be employed for oddk, it is the y-coordinate of Q
that is in the sub eld; we will treat this in Chapter 4.

98 Chapter 7. The state-of-the-art

i/ |steps of| point update update at Q paired
ri |Alg. 51| R) (Q) value f

1 [(45;23) 1
3=0| 3-5 [(12;16)]y +33x +43[35u° +36u? +11u +13[35u° +36uZ +11lu +13
2=0| 3-5 |(27;14)] y+2x+7 [35u° +15u?+11u+18[44u% +34uZ+3u+44
1=0| 3-5 [(18;31)|y +42x +27(35u° +33u? +11u +23|5u° +24u? +21u +24
0=1] 3-5 |[(45;24)y+9x+42 [35u3 +44u?+11u+21|21ud+36u?+9u+25

6-10 0 X +2 31u? +31 9u® +10u® +32u +36

12 frp (Q) 9u®+10u?+32u+36

in Examples 5.3.1 and 7.1.1. Notice again that the value outip from the Miller
loop is not equal to either of the values output in 5.3.1 or 7.1, but rather that
all three are equivalent under the relatiora = bif a=b2 (Fqk)r.

We now re ne Miller's algorithm for the Tate pairing computation subject to
the BKLS-GHS improvements. Speci cally, notice that the daominators that
were on lines 5 and 9 have now gone (under the assumption thatis even),
and that the second input is now the pointQ, rather than a divisor equivalent
to Dq. Further notice that we have necessarily include the nal gxonentiation
in Algorithm 7.1 since this is what facilitates the modi cations. We have also
assumed a Type 3 pairing so the coordinates Bf and Q lie in elds that allow
for denominator elimination. Recall from the discussion athe end of Example
5.3.1, or from Example 7.1.2, that the vertical line joining(r 1)P P
and P in the last iteration can also be omitted. Thus, an optimisedate pairing
computation will execute the main loop fromi = n 2toi = 1 before performing
a \doubling-only" iteration to nish; we left the main loop t oi = 0 for simplicity.

7.2 Projective coordinates

Although the optimisations described in the previous sean removed the denom-
inators in Step 5 and Step 9 of Algorithm 7.1F4-inversions are still apparent
in the routine since the a ne explicit formulas for the elliptic curve group op-
erations (see Eq. (2.4) and (2.5)) require them. The penaltfor performing
eld inversions in PBC is not as bad as it is in ECC (more on thidater), but
in any case inversions are still much more costly than eld nitiplications. In
this section we employ the same techniques to avoid eld ink&ons as we did in
the context of ECC in Example 2.1.9. Namely, we show how Algitinm 7.1 can
become inversion-free if we adopt projective coordinatetn the early days the
situation for projective coordinates in the context of paiings was perhaps a little

7.2. Projective coordinates 99

Algorithm 7.1 The BKLS-GHS version of Miller's algorithm for the Tate pair
ing.

Input: P 2 G1, Q2 Gy (Type 3 pairing) and r = (rp 1:::rirg)2 with rp 1 =1.
Output: f.p (Q)©@ D= £

.R P,f 1.

2: for i= n 2downto Odo

3: Compute the sloped line function "r.g for doubling R.

4: R [2]R.

5: f f 2 \R;R (Q)

6: if ri =1 then

7 Compute the sloped line function 'r.p for adding R and P.
8: R R+ P.

9: f f ‘R;p (Q)

10: end if

11: end for

12: return f f (@ D=

unclear [Gal05, 1X.14], but nowadays all of the record-bré&éng implementations
(at least up to the 128-bit security level) have exploited te savings o ered by
working in projective space.

The potential of projective coordinates was mentioned in [gsing in the early
landmark papers [BKLS02x3.2], [GHS02], but the rst detailed investigation was
by Izu and Tagaki [ITO2]. As Galbraith mentions [Gal05, IX.H4], the analysis
in [ITO2] is misleading, however projective coordinates dinot wait too long
before more accurate expositions that also endorsed theisafulness surfaced
[CSBO04, Sco05a]. The following example shows how projeetigoordinates can
be used to achieve an inversion-free version of Miller's algthm.

Example 7.2.1 (Magma script) In the context of standard ECC operations, we
gave the (homogeneous) projective point addition formulam Example 2.1.9.
Thus, here we will give the homogeneous doubling formulas mmputing (X zr :
Yor : ZpRr) = [2)(Xr : Yr : Zr) ONn E=Fy 1 Y?Z = X3+ aXZ 2+ bZ® in Step
4 of Algorithm 7.1, together with the formulas for computingthe line function
"rr(Q) in Step 3. The ane doubling formulas in Equation (2.5) are noved
into homogeneous projective space via the substitution= X=Z andy = Y=Z,

100 Chapter 7. The state-of-the-art

which gives:
_ g+ Z§k, _ 3X@+ XRZE 2Y4ZR,
2YRZr ' 2YrRZ3 ’
XpgRr _ 8XRYZZR +6X3ZZ3 +9XA + Z4
ZR a4Y2z2 ’
Yor _ 8Y§Z3+Z8 12XRZ3YZ 36X3ZRYZ+27Z3XA +9ZAXA +27XE .
Z2R 8Y3zZ3 ’

where” 1y (x +)is still an ane line tangent to E at the point R. It is
again the ability to multiply by factors in proper sub elds of Fy that allows us
to arrive at an inversion-free routine. Namely, we clear theenominators of
and through multiplication by 2YzZ32, so the line® becomes

TI(2YRZE) Y ((BXEZr+ ZR) x (BXR+ XrZR 2YAZR));

which will be evaluted aty = yo and X = Xq. Note that since Q remains xed

throughout the routine, there is no need to cast it into projetive space. Finally,
setting Zjpr = 8YSZ3 and updating the numerator of Xz above allows us to
compute Xpr © Yir : Zpr) from (Xg @ Yr @ Zg) without any Fg-inversions.

Thus, we have an inversion-free way to proceed through the Nir doubling

stage (Steps 3-5 of Algorithm 7.1), and performing the anajous procedure for
the Miller addition stage (Steps 7-9) will give an inversiofiree Miller loop.

7.3 Towered extension elds

This section discusses e cient methods of constructing théull extension eld
Fq over Fg, where the ultimate goal is to minimise the cost of the arithratic
in Fg. Indeed, the majority of operations within the pairing algoithm take
place in the full extension eld, which is far more expensivéo work in than its
proper sub elds, so the complexity of Miller's algorithm havily depends on the
complexity of the associated- -arithmetic.

So far we have been using one irreducible degreg@olynomial to construct
Fq over Fq. This has been satisfactory, since our small examples havestly
had embedding degreek = 2 or k = 3, where we have no other option but to
use polynomials of degree two and three to respectively ctmet Fy. However,
for large values ok, which will be composite in all cases of interest to us, there
is an a natural alternative which turns out to be much faster.This idea was rst

7.3. Towered extension elds 101

put forward by Koblitz and Menezes [KMO05], who proposed usinembedding
degrees of the formk = 2'3 and building up to Fq Using a series of quadratic
and cubic extensions that successivetpwer up the intermediate elds. For such

k, they show thatifq 1 mod 12 and if is neither a square or cube iffry, then

the polynomial x* is irreducible in Fy[x] [KMO5, Th. 1]. This means that

the tower can be constructed by a sequence of Kummer extenso this involves

successively adjoining the square root or cube root, then the square root or
cube root of that, and so on.

Example7.3.1 (Magma script) Let q= 97, and consider constructingFq:2 using

=5 which is a non-square and non-cube ifq, so that Fy2 can be constructed
directly as Fpz = Fg[X]=(X*2). Choosing instead a tower of quadratic and
cubic extensions, we could construdt,. as

2 3 2
Fq /qu /Fqs /Fq12:
We show a random element ir-:
(79 +63) 2+(29 +63) +(38 +27) +(63 +22) °+(93 +10) +75 +10:

Observe what happens if, instead of performing multiplicadns in Fg2 over Fq,
we start by performing multiplications overFq. Writing a; b2 Fg2 over Fgs gives
a= a+a andb= ky+by , with ag;as;by; b 2 Fe. Thus,a b= (aghy aihy)+
(aghi+ a;1hy) , where each of the components inside the parentheses ar&jn To
perform each of the multiplications inF4, we then work overF,, so for example
we would need to compute a multiplication betweeray = ago + ag1 + ag2 2
and by = yo+ by + by 2, where each componenty; and ky; is in Fg. Inthis
way the operations Iter down the tower until we are performng multiplications
in Fq.

The computational advantage of adopting a tower of extensis may not be
immediately evident. Namely, suppose we were to analyse tbemplexity of the
Fq2 multiplication in Example 7.3.1. If we were to employ the naie \schoolbook"
method of multiplying two extension eld elements, which oprates component-
wise, then anFg. multiplication computed directly over Fy would cost 144F,
multiplications. If we instead descend down the tower empying schoolbook
multiplication, then an Fy 2 multiplication would cost 4 F¢ multiplications, each
of which would cost 9F; multiplications, with each of these costing 4 mul-

102 Chapter 7. The state-of-the-art

tiplications in Fq, giving 4 9 4 = 144 base eld multiplications in this case
too. However, one of the reasons that the towered approachttees a direct
extension toF4 is because there exist much better (than schoolbook) methed
of performing arithmetic in quadratic and cubic extensions Speci cally, the
Karatsuba method [KO63] for quadratic extensions allows us compute multi-
plications in Feu using 3 multiplications in Fq, or to compute a squaring inFgu
using only 2 multiplications in Fu. The same method applied to cubic exten-
sions allows us to compute multiplications inF. using only 6 multiplications
in Fqu (rather than 9), and squarings inFg. using 6 Fq -squarings (which are
faster than Fq-multiplications in general). There are also other methodand
variations which are competitive for these small extensisn such as the Toom-
Cook method [Too63, CA66], which computes aR . multiplication using only
5 Fe multiplications, but this requires a substantially highernumber of addi-
tions. A helpful report that compares all of these methods ithe contexts of
pairings is given by Devegiliet al. [DOSDO06]. Referring back to the examples
above, and this time descending down the tower using Karatisa multiplications
for the quadratic and cubic extensions gives thaF;. multiplications now cost
3 6 3 = 54 Fy multiplications; a huge improvement over the schoolbook rtgod.
We note that a di erent ordering of the quadratic and cubic tavers fromF, to
Fq2 could be chosen, and that this would give the same number Bf multipli-
cations for a multiplication in Fg2, but that there are certainly reasons (other
than the twisted curve) that we would prefer one tower over awther.

It could potentially be misleading however, to argue that te low num-
ber of Fq; multiplications o ered by degree 2 and 3 Karatsuba-like métods is
what makes the towered extensions preferable to a direct extsion. Indeed,
the Karatsuba and Toom-Cook algorithms generalise to extsions of any de-
gree [WPO06], [Ber01x6]. In fact, generalised Toom-Cook theoretically guaran-
tees that we will be able to perform the~;. multiplication from the above exam-
ple (via a direct extension) using only 23, multiplications, which is less than
half the number of F; multiplications used in our towered Karatsuba approach.
However, such high-degree generalisations require an enous number ofF,
additions, and the theoretical number of multiplications hey save is nowhere
near enough to o set this de cit. Thus, technically speakim, it is in the sav-
ing of F4-additions that the towered approach gains its advantage.ntleed, the
additions encountered when performing the highest level rtiplications at the

7.3. Towered extension elds 103

top most sub-extension of the tower Iter down linearly toFg, whilst performing
Fq<-arithmetic via a direct extension blows the number of addibns out (at the
very least) quadratically.

Given the simple test to determine irreducibility of the biromial x when
q 1mod 12 andck =2'3 above, Koblitz and Menezes de ned gairing-friendly
eld to be a prime eld with characteristic q of this form. However, given the
number of conditions already imposed on the search for paig-friendly curves,
Benger and Scott argue that this extra restriction is unneasary [BS10]. They
relax this constraint and introduce the notion oftowering-friendly elds: a eld
Fqn is called towering-friendly if all prime divisors ofm also divideq 1. For
such elds, they invoke Euler's conjectures to give an irrattibility theorem that
facilitates all intermediate subextensions to be constrted via a binomial.

Loop shortening has played a major role in the evolution of jpégng compu-
tation. Indeed, the series of landmark works that are summased in this section
have an impressive evolution of their own. Duursma and Lee [D3] were the
rst to show that, in special cases, a bilinear pairing can b@btained without
iterating Miller's algorithm as far as the large prime grouporder r. Barreto et
al. [BGOSO07] generalised this observation to introduce ther pairing (the eta
pairing); a pairing which achieves a much shorter loop length (than) on any
supersingular curve. Hess, Smart and Vercauteren [HSVO&ingli ed and ex-
tended the T pairing to ordinary curves, introducing theate pairing, whose loop
lengthisT =t 1, wheret is the trace of the Frobenius endomorphism (see Eq.
(2.6)), which is much smaller thanr in general cases of interest. A number of
authors followed this work with observations that in many caes we can do even
better than the ate pairing. This included the introduction of the R-ate pair-
ing [LLPO9], as well as other optimised variants of the ate pamg [MKHOOQ7].
Vercauteren [Verl0] culminated all of these works and intcuced the notion of
optimal pairings, conjecturing a lower bound on the loop length required to b
tain a bilinear pairing on any given curve, and showing how tachieve it in many
cases of interest. His conjecture was proven soon after byddewho drew a line
under all the loop-shortening work to date, putting forwarda general framework
that encompasses all elliptic curve pairings [Hes08].

Our intention in this section is to bring the reader up to spe& with optimal
pairings, by picking a few examples that illustrate key corepts. For the sake
of simplicity, we are forced to skip past some of the key worksentioned in

104 Chapter 7. The state-of-the-art

the last paragraph; in particular, we will not present the pairing that targets
supersingular curves, since it is most suited to curves ovelds of characteristic
2 and 3. We will also not be giving examples of the works that n@ between
the ate and optimal ate pairing papers (e.g. [MKHOOQ7, LLPO9] in hope that
the reader will not have too much trouble following an immedite generalisation.

At a high level, the notion of loop shortening makes use of twabservations.
Firstly, recall from Chapter 2 (in particular Example 2.2.11), that appropriate
endomorphisms orE compute some multiple []P from P, which essentially allow
us to \skip ahead" in the fundamental computation of m]P from P. Just as
they can be used to shorten the double-and-add loop for scataultiplications in
ECC, e cient endomorphisms can be used to shorten the Milleloop in PBC. The
second observation is that, given any two bilinear pairingen E, their product
or quotient will also give a bilinear pairin(g. More genera}f we can say that if
er; 5 & are bilinear pairings onE, then ~ €’ (j; 2 Z) will also be a bilinear
pairing [ZZH08a, Corr. 1].

We start with an example of Scott's idea [Sco05b], which canfieom the rst
paper to look at loop shortening on any type of ordinary curve He looked at
a special case of ordinary curves calleabt supersingular curvegNSS). These
should not be confused with the more general term non-supggular, which
(by de nition) means all ordinary curves. NSS curves are a ggial type of
ordinary curve, but they cover the cases that are most usefut the context of
pairings. In fact, we have already seen NSS curves, as thee arecisely the
curves described in Table 6.2. Essentially, the modularitgonditions imposed
on the curvesy? = x3+ bandy? = x3+ ax in Table 6.1 is what makes them
supersingular, because these conditions force the mapsdescribed in that table
to be de ned over the extension eld { i.e. these congruencesake a distortion
map. On the other hand, the alternative modularities on theame curves in Table
6.2 mean that the associated's are de ned overF,. Thus, Scott starts with the
motivating question: under these circumstances, what becomes of these distartio
maps? The rest of his paper responds by showing that they are usefulot as
distortion maps, but rather as e cient endomorphisms onE. The following
example does not give the details of Scott's algorithm; it mely hints towards it
by showing the potential of the endomorphisms on an NSS curve.

Example 7.3.2 (Magma script) Taking x = 1 generates the smallest BN curve
(see Example 6.3.3 for the polynomials) withg = 19, E=Fy : y? = x3+2

7.3. Towered extension elds 105

and r = 13 as the group order. It is clearly an NSS curve (see Table260r
[Sco05Sb, Eqg. 4]). The non-trivial cube roots of unity are dened overF,, and
are 3 =7and 2= 11. They both de ne a di erent endomorphism onE (e.g.
3 (Xy) 7! (3X;y)) which corresponds to a di erent scalar multiplication ,
ie. (ax;y) =[1(x;y). The two dierent 's are the solutions of 2+ +1 =
0 modr, which comes from ® 1 modr matching 3 = [1] in End(E), so

1=9and ,=23correspondto ;and 2 respectively. Miller's algorithm would
usually double-and-add to computer]P =[2+ +1]P=[]([JP + P)+ P.
However, forP = (X;y), the endomorphism allows us to easily calculate the
point[[P+ P =((+1)x; y). Thus, if we store the values of the points
in the n = blog, c doublings that build up to []P, the values of the points
in the secondn doublings can be found at the cost of a single multiplicatian
This is already more e cient, but Scott notices that since the points are related,
the lines they contribute in the point doubling phase of Mikr's algorithm are
similarly related. Namely, the contribution to the pairing value in the rst n
iterations is (yo Yi) mi(Xo Xi), where (xi;y;) is the point [2]P, and m; is
the line slope resulting for the point doubling (we usen in this example because

is already taken). It follows (see [Sco05kx5]) that the contribution to the

pairing value from the nal n doublings will be (yo Vyi) mi(X o Xi). This
means we only need to loop as far as= blog, c (rather than 2n = blog, 2c) to
get all the information we need. See Scott's paper for the aligthm description
that ties all this together, where he deals with cases where= 22 + 2°. Thus,
to nish our example with the algorithm write ;=22 +2P and , =2% +2
with a; =3, b =0, aa =1, b, =0.

The maps on NSS curves clearly o er an advantage, but there is aher
endomorphism we have already seen that turns out to be much neopowerful.
Namely, the ate pairing makes use of the Frobenius endomoipim on E. A
key observation is that the Frobenius endomorphism acts trially on elements
in the base eld, i.,e. (P) = P in Gy, so we instead look at using the trace-
zero subgroupG, where acts non-trivially. Here (Q) = [q](Q), but since
[A(Q) =[t 1](Q), we have (Q)=[T](Q) (recallthat T=t 1). Hess, Smart
and Vercauteren [HSV06] use this endomorphism to derive trege pairing ar,
which is a map

ar .G, Gi! Gy;

106 Chapter 7. The state-of-the-art

de ned as
ar(Q;P) = fT;Q(p)(qk 1)=r.

It helps to see a brief sketch of their proof as follows. We shdhat ar is bilinear
by relating its value 1“T;Q(P)(qk D= to the Tate pairing (with Q as the rst
argument), which we already know is bilinear. Sincg T modr, T¥ 1 modr
(becausek is the embedding degree), so writear = TX 1 for somem. Recall
the Tate pairing (with Q as the rst argument) as e(Q;P) = f.q(P)@ D=,
which (under simple properties of divisors) meang(Q; P)™ = f .o (P)@ D= =
fri 10(P)@ D We can then (again using simple properties of divisors) $pl
this into a product of f.ri1o(P), each of which is raised to an appropriate
exponent. SinceQ 2 G,, each of theseT']Q's is the same as '(Q), and since

is purely inseparable of degreg, all of the valuesf.;rijo(P) in the product
becomef ?ZQ(P), so we can clean up the exponent to gei(Q; P) = a7 (Q;P)".
The exponentv does not divider in general, so the bilinearity of the ate pairing
follows from that of the Tate pairing (see [HSV06, Th. 1] forhe full details).

Since there is a nal exponentiation, the optimisations tha transformed
Miller's algorithm into the BKLS version still apply, so we aly need to up-
date the input de nitions in Algorithm 7.1. Namely, r becomesT, P and Q
(from G; and G, respectively) switch roles. For no other reason than for ea®f
future reference, we write these updates in an ate-speci @ssion below. Note
thatif T=t 1< 0,thenitis netotake T = jTj [Verl0, xC]. There is only
one trick that was used in the Tate pairing that does not carracross to the ate
setting. Namely, we can no longer ignore the last bit in the &l iteration like
we did in Section 7.1, because if an addition occurs in the ihateration it will
now be a sloped line, whilst in the Tate pairing the last addion line joined P
and [r 1]JP = P and was therefore vertical.

Example 7.3.3 (Magma script) It helps to immediately see the di erence be-
tween the ate and Tate pairing, so we will continue on from Exaple 7.1.2:
=47, E=Fq:y? = x>+ 21x + 15, #E(Fy) =51, r =17, k =4, Fyu = F4(u),
u* 4u?+5=0, P =(45;23)2 G; and Q = (31u? +29;350% + 11u) 2 G..
The trace of Frobenius it = 3, so takeT = 4. Thus, we will compute the ate
pairing via Algorithm 7.2 with only two doublings. We have conbined the inde-
terminate function = and its evaluation " (P) at P into the same column to t the
table in. Thus, the ate pairing ar is computed asar (Q; P) = f.q (P) D= =

7.3. Towered extension elds 107

Algorithm 7.2 The BKLS-GHS version of Miller's algorithm for the ate pairng.
Input: P 2 Gy, Q2 G, (Type 3 pairing)and T =(Ty 1:::T1Tg)2 with Ty 1= 1.
Output: fro(P)@ D= f,

R Qf 1

2: for i=n 2downtoOdo

3: Compute the sloped line function "r.g for doubling R.

4: R [2]R.

5: f f2 \R;R (P)

6: if rjy =1 then

7: Compute the sloped line function 'r,q for adding R and Q.
8: R R+Q.

9: f f \R;Q(P).

10: end if

11: end for

12: return f f (@ D=

i/ |steps of point update (°); paired
R; |Alg. 5.1 R update at P (*(P)) value f
1 [(81u?+29;35u® +11u) 1
1=0| 3-5 [(7u?+25;37u°+28u)| y+(u®+32u)x +42us +15u;
40ud +45u + 23 40ud +45u + 23
0=0] 3-5 [(16u?+12;6u®+24u)|y+(28u+22u)x +17us +26u;
8ud +29u +23 44u% +24u? +41u +31
12 fro (P) 44 +24u?+41u+31

(44u3 + 24U2 + 41u + 31) 287040 = 213 + 372 + 25U + 25.

Notice the price we pay for the much shorter loop in the ate pang, in that
it is now the rst argument of the pairing (Q) that is de ned over the larger
eld, so the elliptic curve operations (doublings/additions) and line function
computations are now taking place inFy. For example, compare the second
and third columns of the table in Example 7.3.3 to the table irExample 7.1.2.
It is here that the power of a high-degree twist really aids agucause. Namely,
utilising the twisting isomorphism allows us to move the paits in G,, which is
de ned over F, to points in G3, which is de ned over the smaller eld Fgea. In
Example 7.3.3 above wher& = 4, the maximum degree twist permitted byE is
d = 2, so we could have performed the point operation and line ogutations in
Fq-2 = Fe. However, if the curve had have been of the foriyr = x° + ax, we
could have utilised ad = 4 quartic twist (see Section 4.3) and performed these
operations all the way down in the base eld,; i.e. in this case we would pay
no price for a much smaller loop. In general though, providede make use of
high-degree twists in the ate pairing, then the price we payidoing more work

108 Chapter 7. The state-of-the-art

(per iteration) in the larger eld is nowhere near enough to et the savings we
gain through having a much shorter loop, meaning that the atpairing (or one
of its variants) is much faster than the Tate pairing. We now tirn to describing
optimal pairings. Vercauteren [Verl0] begins with the obseation that the ate
pairing ar corresponding toT ~ gmodr is a special case of the pairing .
that is obtained by taking any power ; d modr; some speci ¢ consequences
of this observation were previously considered in [MKHO0ZZHO08b]. Since

i corresponds to the loop length of the pairing ;, we would like it to be as
small as possible. Thus, we would like to nd the smallest vaé of g modr
(i 2 Z), and since 1 modr, nding the smallest a, would only require
testing the possibilities up tok 1 (i = k clearly gives the trivial degenerate
pairing). However, Vercauteren actually does much bettehtan this by observing
that since g modr induces a bilinear pairinga ., then any linear combination
of |, Gd Omodr gives rise to a bilinear pairing

v V1 Pk p=r
QP)7 floP) ; (7.1)

i=0 i=0
where the’; are simple \one-o " line functions (chords) that are neededo make
the bilinearity hold { see [Verl0, Eq. 7] for details. Also, lte exponentiations of
each of the (at most™ + 1) line functions to the power ofd should not concern
us, as these are just repeated applications of the Frobeniesdomorphism inGr,
which is essentially cost-free (more on this in Section 7.5he main point to
note is that the loop lengths of the Miller functionsf.q are the c. 'Ighus, we
would like to nd a multiple mr of r with a baseqg expansionmr = ::O Gq
that has the smallestc, coe cients possible. Vercauteren proceeds naturally by
posing this search as a lattice problem, i.e. that such smaill are obtained by
solving for short vectors in the following lattice

0 1
r O 0 ::: 0
q 1 0 ::: 0
L = d 0 1 ::: 0¢; (7.2)
g o0 ::: 0 1

which is spanned by the rows, and wherg (k) is the Euler phi function of k.

7.3. Towered extension elds 109

He then invokes Minkowski's theorem [Min10] to show that the exists a short
vector (vi;::; Vi 1) in L such that maxjvij ' ®. Thus, we have an upper
bound on the largest Miller loop length that will be encounteed when computing
the pairing in (7.1). Vercauteren uses this bound to de ne amptimal pairing
[VerlO, Def. 3]: &(;) is called anoptimal pairing if it can be computed in
log, r=" (k) + Miller iterations, with log, k. He subsequently conjectures
that any bilinear pairing on an elliptic curve requires at last log, r=" (k) Miller
iterations. Following [Verl10, Def. 3], Vercauteren also ies that the reason
that the dimension of L is ' (k) is because we really only need to considef
up to g ® 1. This is due to that fact that (q) 0 modr implies that ¢

with j > ' (k) can be written as linear combinations of theg (i ' (k) 1)
with small coe cients, which means only theseg should be considered linearly
independent.

Before giving examples, we mention a caveat. Observe that mpj =
does not imply that the lower bound is met, since the number diller iterations
required is given by ;log, . However, we will be searching for small vectors
in the lattice L, whereq and r come from families and are therefore given as
polynomialsq(x) and r (x). Therefore, thec in the short vectors will themselves
be polynomial expressiong;(x), meaning that the Miller functions f ().q in
(7.1) will typically follow from f,q.

We will illustrate with three families that were used as examles in Sec-
tion 6. Vercauteren gives more examples. Magma has a built algorithm
ShortestVectors () that serves our purpose, but the code we use in the follow-
ing three examples was written by Paulo Barreto, and passech o us by Luis
Dominguez Perez.

Example 7.3.4 (Magma script) Recall the parameterisations fork = 12 BN
curves from Example 6.3.31(x) = 6x?+ 1, g(x) = 36x*+36x3 +24x?>+6x + 1
andr(x) = 36x*+36x3+18x2+6x+1. These were actually used to generate the
curve in Example 6.1.2, withx = 94539563377761452438 being 67 bits, which
generated a 271-bigandr. Observe that Miller's algorithm to computef . (Q)

in the Tate pairing would therefore require around 270 iteftgons. Alternatively,

t = t(x) is 137 hits, so computing the ate pairingar (Q; P) = fr.o(P) D=
would require around 136 iterations. However, Vercauterenbound suggests we
can do even better: sincé (12) = 4, our loop can be reduced by a factor of 4, i.e.
we should require logr=4 68 iterations. Following (7.2) then, we seek short

110 Chapter 7. The state-of-the-art

vectors in the lattice

0 1
36x* +36x3+18x%2+6x+1 0

0
6x2 10 og_
36x3+18x2+6x + 1 010K
36x3 +24x%2+12x + 3 00

where the q(x)' down the rst column were immediately reduced modul (x).
Some short vectors irk areVy(x) = (6 x+2;1; 1;1), Vo(x) = (6x+1;6x+3;1;0),
Va(x)=(5x 1, 3 2x0),Vu(x)=2x;x+1; x;x). Inreference to the
point we made before this example, we prefer the short vectowith the minimum
number of coe cients of sizex, so choosingV;(x) and computing the optimal
ate pairing ay, (x) following (7.1) gives

av,) = (forzo(P) fio(P) T 10(P) fug(P) M) D7
= (fowzg(P) M) 97

wheref1o =1 and f 1.0 = 1=f1.q9vg (which disappears in the nal exponenta-
tion) can be discarded, andV is a product of 3 simple line functions that are
computed easily { this example is in [Verl0, IV.A], whereM is de ned. The

only Miller loop we need to compute i gx+2.0(P), which for our x-value, is 69
bits, meaning the optimal pairing indeed requires log=4 68 iterations. No-

tice then, the di erence between the ease of using (x) compared to any of the
other short vectors above, which all suggest more than one IMr loop.

Example 7.3.5 (Magma script) Recall the parameterisations fork = 16 KSS
curves from Example 6.3.4 ag(x) = (2x° + 41x + 35)=35, q(x) = (x¥° +

2x% + 5x8 + 48x° + 152x> + 240x* + 625x2 + 2398x + 3125)=980 andr(x) =

(x8 + 48x* + 625)=61250. For anyx-value, the Tate pairing requires comput-
ing the function f4s.48x2+625:p (Q), Whilst the ate pairing computes the function
f 2xs+4a1x+35)=35.0(P). Since' (k) = 8, the ate pairing is not optimal, i.e. log, r=8
should have an optimal pairing loop length of orde©(x), not O(x®). Thus, we

7.4. Low Hamming weight loops 111

look for short vectors in the lattice

x8+48x*+625 0 O O O O O O !
2x° 41x 3 0 0 0 0O 0 O
4x5 + 117x2 0 175 00 0 O
L= 27 293 0O 0 85 0 0 0 O
x4 + 24 0O 0 0O 7 0 0 O
x> 38 0O 0 0O 03 0 O
3% 442 0 0 0 O 0 175 O
11x’+278x® 0 O O O O O 875

A nice short vector isV(x) = (x; 1;0;0;0; 2;0;0), so indeed an optimal pairing
is

K 1)=
avp) = (fxo(P) f 20(P) M) D

whereM is again a product of simple one-o lines, and we can compute ,.o(P)
as ¥f,q(P), since the vertical line that makes two equal evaporates ithe nal
exponentiation. Note that f,.o(P) is simply the rst doubling of Q at P, and
that f,.q(P) is the only Miller loop required.

Example 7.3.6 (Magma script) Recall the parameterisations for & = 24 BLS
curve from Example 6.3.2 ag(x) = x+ 1, q(x) = (x 1)’(x® x*+1)=8+ x
andr(x) = .(x) = x8 x%+ 1. The Tate pairing requires the computation
fye x4+1.p(Q) Whilst the ate pairing computesf,.q(P). Since' (k) = 8, the ate
pairing is already optimal, i.e. it has a loop length of logr)=8. In cases when
the ate pairing is not optimal, like the previous two examplg, it is common
that other variants like the R-ate pairing of [LLP0O9] also achieve optimality. For
example, Scott uses th&®-ate pairing to achieve optimality fork = 12 and k = 18
implementations targeting the 128 and 192-bit security lels [Scoll, Table 1].

7.4 Low Hamming weight loops

This short section describes a more obvious optimisation tdiller's algorithm.
This trick was suggested in the very early papers on pairinggmputation, but for
reasons that will become clear in a moment, we have delayed ihtroduction in
this section until after we described the ate and optimal atpairings. Regardless
of the pairing-based protocol, the loop length of the pairg is known publicly;

112 Chapter 7. The state-of-the-art

therefore, unlike ECC where we try to avoid special choice$ scalars that might
give attackers unnecessary advantage, in PBC there is no ptem in specialising
the choice of the loop length. In this light, it is advantageos to use curves
where the loop length has a low Hamming weight, thus minimisg the number
of additions incurred in Miller's algorithm.

For supersingular curves over prime elds, where E(Fgq) = q+ 1, nding
a curve whose large prime divisor has low Hamming weight is relatively easy.
Thus, in the early days, facilitating a low Hamming weight Miler loop was not too
di cult. However, once the introduction of parameterised families were needed
for higher embedding degrees, the polynomial representati for r (x) meant that
controlling the loop length (r) of the Tate pairing was a little more di cult. The
best we could do in this scenario is search farvalues of low Hamming weight, in
the hope that the polynomialr (x) wouldn't completely destroy this. Nowadays
however, the introduction of the ate and optimal ate pairing makes this optimi-
sation very relevant. Namely, as we saw in the examples in tipeevious section,
the loop length associated with the optimal Miller functionis often some small
function of x, if not x itself. Thus, choosingx to be of low Hamming weight
can be very advantageous for a faster Miller loop, as we showthe following
example. In fact, we will see in the next section that a fastévliller loop is only
a partial consequence.

Example 7.4.1 (Magma script) Both x = 258419657403767392 and= 144115
188109674496 are 58-bit values that result ik = 24 BLS curves suitable for
pairings at the 224-bit security level. The former was foundby kick-starting
the search at a random value betweerr2and 28, and as such, has a Hamming
weight of 28, as we would expect. On the other hand, the secovalue is actually
257+22542184211 'which has Hamming weight 4. Thus, we would much prefer the
second value since this would result in 24 less additions dugh the Miller loop.
Another nice alternative that gives similar parameter sizeisx = 2% +240 220,
which does not have a low Hamming weight, but rather a low NARveight (weight
in the signed binary representation), for which Miller's ajorithm can be easily
updated to take advantage of.

7.5. The nal exponentiation 113

7.5 The nal exponentiation

Until now, our optimisations have all applied to the Miller loop. This was a
natural place to look for tricks and shortcuts in the early dgs, since at low levels
of security, the Miller loop is by far the bottle-neck of the &orithm. However,
as the security level increases, the relative cost of the ha&xponentiation also
increases [DS10]. It appears that, all known high-level aptisations considered,
pairings on BN curves at the 128-bit security level is roughlthe \crossover
point* where the complexities of the Miller loop and the nal exponentiation
are similar [AKL* 11, Table 4], [BGDM" 10, Table 3], [NNS10, Table 2]. Thus,
at higher levels of security, the nal exponentiation is themost time-consuming
stage of the pairing computation.

For curves belonging to families, Scotet al.'s algorithm [SBC* 09a] is the
fastest method to date. In this section we illustrate their €chnique by means of
an example, which we take directly from our joint work with Kiistin Lauter and
Michael Naehrig [CLN11]. This work looked ak = 24 BLS curves in detail, since
this family is a frontrunner for high-security pairings, paticularly when targeting
256-bit security. There are several other examples looketia [SBC* 09a].

We start with a brief description of the general algorithm, lefore applying
it to our particular case. Supposek is even and writed = k=2. We start by
splitting the nal exponent into three components

@ D=r=[(d" 1] (oL +1)= (@] [«(@=r]

easy part hard part

where the two components on the left are the \easy part" becae (the second
bracket reduces to powers off and) raising elements inFy to the power of g
involves a simple application of the Frobenius operator, which almost comes for
free. Itisthe (qg)=r term that does not reduce to such a form and which is aptly
named the \hard part" of the nal exponentiation. Suppose wehave already
exponentiated through the easy part, and our intermediatealue ism 2 F.
The straightforward way to perform the hard part, i.e. m (@7 is to write the
exponent in baseq as «(g)=r = i”:()l iq, and to further exploit repeated
applications of in

mk(Q):r:(mqn 1)n1(mq)l mO’

114 Chapter 7. The state-of-the-art

so that all the m® terms essentially come for free, and the hard part becomes
the individual exponentiations to the power of the ;, which are performed using
generic methods. These methods, however, do not take advagée of the poly-
nomial description ofg, which is where Scottet al.'s work advances beyond the
more obvious speed-ups.

Example 7.5.1 (Magma script) Recall thek = 24 BLS parameterisations from
Example 7.3.6:t(x) = x+1, q(X) = (x 1)’(x® x*+1)=3+ x andr(x) =
24(X) = x8 x*+1. To give an idea of the task we are up against, suppose we are

targeting the 256-bit security level, as we did with these cues in Example 6.3.2
with x = 9223372036854782449. The nal exponentiation in this aasnvolves
raising a 15082-bit valug 2 Fg, to the 14578-bit exponent ¢** 1)=r, a number
far bigger than what we would like to write here (but see the goesponding
script). Performing this exponentiation using a naive squa-and-multiply with
no optimisations would therefore involve 14578 squarings@ roughly half as
many multiplications in the 15082-bit eld, a computation that would blow out
the pairing complexity by several orders of magnitude. To t& a much faster
route, we start by splitting the exponent as

(@ D=r=[(g* 1) (¢'+1)] [(¢ d'+1)=r]:

easy part hard part

K 1= 12 4 (® q+1)=r .. .
We compute f (@ D= = §(@° 1@+ . The exponentiation inside

the parentheses is almost free, sindé'” is just 12 repeated applications of the
Frobenius operation , and similarly for raising to the power ofq*, so the easy
part essentially incurs just a couple of multiplications ad maybe an inversion.
We are now left with the exponent (¢ o' + 1) =r, for which we can not pull
out any more \easy factors". However, a very helpful obsertian which aids the
remaining computations is that, after the rst exponentiation to the powerg*? 1,
the valuem 2 Fq. is now such that its norm isNg ,,= ,, (M) = 1. This allows
any inversions inFq« to be computed for free using a simple conjugation [SB04,
NBSO08, SBC 09a], and any squarings irFgs to be computed more e ciently
than standard Fyq squarings [GS10, Kar10, AKE 11]. We now make use of the
non-trivial part of the algorithm in [SBC* 09a], and write the hard part as

X7

(@x)® o) +1)=r(x) = ()a(x)":

i=0

7.6. Other optimisations 115

In an appendix of her thesis, Benger [Ben10] computed thefor a range of curve
families, including BLS curves withk = 24, giving ; = =3, where

A(X) = x? 22X +1;
6(x)= x3 2+ x=x X);
s(x) = x* 23+ x2=x §(X);
AX)= x> X+ x3=x 5(x);
3(xX)= x% 2%+ x* x2+2x 1=x 4x) 7(X);
H(x)=x" 25+ x> x¥+2x%2 x=x 3(X);
1(x)=x® 2T+ x® xP+2x3 x2=x L(X);
ox)=x% 23+ x" x®+2x* x*+3=x (x)+3:
This representation reveals another nice property exhietd by k = 24 BLS
curves: namely, a very convenient way to compute thg with essentially just

multiplications by x. Letting ; = m i®, this structure allows us to write the
hard part of the nal exponentiation as

(@ g*+1)=r _ P P .
m = o 1 2 3 4 5 6 7

where the ; can be computed using the following sequence of operations:

7 (M) (M) 2 m; 6=(2% s5=(6% 2=()5

3 = (2 (Y 2=(03)% 1=(2% o=(1) m® m:

The computation of m@® 1= requires 9 exponentiations by, 12 multiplica-
tions in Fgs, 2 special squarings, 2 conjugations to compute the invessand 7
g-power Frobenius operations. We detail a possible schedgi for the full ex-
ponentiation routine in Table 7.1. Note that we can simply foget about the
di erence between the ; and the ;; by leaving out the 3 in the denominators,
we just compute the third power of the pairing.

7.6 Other optimisations

There are hundreds of papers that have helped accelerate npag computation
to the point it is at today. Of course, we could not delve into he details of

116 Chapter 7. The state-of-the-art

FinalExp \ Input: fr.qo(P) 2 Fps and loop parameterx

Initialize f frq(P),

to 1=f, m f, m m tgto g(m),m m to,

mg mX, my m{! my mf my mM; 7 mymg 7 7 m,
6 % 5 & 4 5 2 = 3 e 3 3 9
2 3 1 3 0 X, m® m2 o md o o m,

f q(7)!f f 6 f q(f)1 f f 5 f q(f)! f f 4,
f q(f)! f f 3 f q(f)1 f f 2y f q(f)! f f 1
O N B

Return foq(P)(@ D= f,

| Output: f.q(P)@" D=

Table 7.1: The nal exponentiation for BLS curves withk = 24,

all the optimisations and improvements that are available.For example, since
our exposition is largely concerned with computational e ¢ency, we have not
covered the work on compressed pairings [SB04,NBS08, Nde@Sich targets low
bandwidth environments, or the work by Galbraith and Lin [GLO9] which looks
at computing pairings usingx-coordinates only.

In addition, a number of papers have looked at operations infairing-based
protocol that are not the pairing computation itself, the met important of which
are point multiplications in the pairing-speci ¢ groupsG; and G,. In Section 6.3
(and Table 6.2 in particular) we saw that the pairing-friendy curves that are most
useful in practice are those of the fornk : y2 = x3+bor E : y2 = x3+ ax. In both
of these cases there is a non-trivial endomorphism2 End(E) that facilitates
faster point multiplications via GLV/GLS scalar decompodiions (refer to Exam-
ple 2.2.11). For point multiplications in G; that take place over the base eld,
the standard GLV decomposition can make use ofto decompose the scalar. For
the more expensive point multiplications inG, that take place over extension
elds, the GLS technique (which additionally exploits the ron-trivial action of
the Frobenius endomorphism) can be used for higher dimensional decomposi-
tions. We particularly make mention of the work of Scottet al. [SBC" 09b] and
Fuentes-Castaedat al. [FCKRH11], who consider fast hashing to the groufs,,
the bottleneck of which is the expensive cofactor scalar ntigllication in G,. For
pairings to become widespread in the industry, e cient o -the-shelf solutions to

7.6. Other optimisations 117

all the operations involved in pairing-based protocols ndeio be available.

Finally, we mention that some recent work has revived the pettial of the
Weil pairing in practice [AKMRH11,AFCK * 12]. Indeed, since the complexity of
the nal exponentiation in the Tate pairing (and its ate-like variants) overtakes
that of the Miller loop at higher security levels, it is natural to reconsider the Weil
pairing for these scenarios. Although several of the Tatgsci ¢ optimisations
do not translate across, loop shortening is available in thé/eil pairing. Indeed,
Hess presented a general framework for loop shortening intlvthe Tate and Weil
pairing methodologies [Hes08]. Aranhet al. used this idea to derive Weil pairing
variants that are particularly suited to the parallel envionment [AKMRH11],
and actually showed that their new Weil pairing is substanally faster than the
optimal ate pairing when 8 cores are used in parallel.

118 Chapter 7. The state-of-the-art

Chapter 8

Summary

The fundamental computation in ECC is the scalar multiplicéion which, in the
most straightforward case, computesi]P fromm 2 Z and P 2 E via a double-
and-add routine. Computing the Miller loop in the Tate pairng e(P; Q) can
be thought of as an extension of this computation by stipulang that the line
functions used in the scalar multiplication ofP are evaluated atQ and accumu-
lated as we proceed to computer{]P. Thus, those who understand ECC related
computations should nd a relatively easy transition to the basics of pairing
computation. This is why we started with a general overviewfd=CC in Chapter
2, which included an elementary description of the group Igwas well as many
optimisations like that of adopting projective coordinats or the GLV technique
which exploits endomorphisms to accelerate the computaticof [m]P. Carrying
many ECC related improvements over to the context of PBC is shightforward,
whilst translating other optimisations requires a rm knowledge of the functions
involved in the pairing computation. For example, one coulahot hope to thor-
oughly understand how or why the (optimal) ate pairing workswvithout knowing
the basics of divisor theory. In Chapter 3 we presented all éhdivisor theory
that is necessary in preparation for the description of the \ail, Tate and ate-
like pairings. We gave a very detailed description of the-torsion group onE
in Chapter 4, and illustrated that the availability of di er ent (e ciently com-
putable) maps between order subgroups give rise to di erent pairing types. We
adopted the widely accepted argument that Type 3 pairings armost commonly
the preferred setting, thereby de ningG; and G, as the base eld subgroup and

119

120 Chapter 8. Summary

trace-zero subgroup respectively. We nished that chapteby detailing an e -
cient method of working inG,, namely by exploiting the isomorphism between
the trace-zero subgrougs, on E and the trace-zero subgrougs$ on the twisted
curve E® which is de ned over a smaller eld. In Chapter 5 we de ned tke
Weil and Tate pairings and described Miller's algorithm whth makes crypto-
graphic pairing computations practical. Having describedn e cient algorithm
to compute pairings, Chapter 6 looked at the complementaryrana of generat-
ing pairing-friendly curves. We discussed that pairing-fendly curves are very
special in general, and cannot be found by searching at randp before giving
a general overview of the many clever methods that have beeawloped in the
last decade to facilitate their construction. We nished inChapter 7 by bringing
the reader up to speed with some of the major milestones in eent pairing
computation, most notably the BKLS-GHS algorithm for the Tae pairing, and
the impressive work on loop shortened versions of the Tate igag which was
pinnacled by the optimal ate pairing.

Bibliography

[AB10]

[ACD* 05]

[AFCK * 12]

[AKL * 11]

[AKMRH11]

[AMO3]

[BBC*09]

M. Abdalla and P. S. L. M. Barreto, editors.Progress in Cryptology
- LATINCRYPT 2010, First International Conference on Cryptol-

ogy and Information Security in Latin America, Puebla, Mexto,

August 8-11, 2010, Proceedings/olume 6212 ofLecture Notes in
Computer ScienceSpringer, 2010.

R. M. Avanzi, H. Cohen, C. Doche, G. Frey, T. Lange, K. Ngwn,
and F. Vercauteren. The Handbook of Elliptic and Hyperelliptic
Curve Cryptography CRC, 2005.

D. F. Aranha, L. Fuentes-Castaneda, E. Knapp, A. J. Menzes,
and F. Rodrguez-Henrquez. Implementing pairings at tre 192-bit
security level. Cryptology ePrint Archive, Report 2012/22, 2012.
http://eprint.iacr.org/

D. F. Aranha, K. Karabina, P. Longa, C. H. Gebotys, and
J. lopez. Faster explicit formulas for computing pairingsover or-

dinary curves. In K. G. Paterson, editor, EUROCRYPT, volume

6632 ofLecture Notes in Computer Sciencgpages 48{68. Springer,
2011.

D. F. Aranha, E. Knapp, A. Menezes, and F. Rodrglez-Henrquez.
Parallelizing the Weil and Tate pairings. In Chen [Chell], gges
275{295.

A.O.L. Atkin and F. Morain. Elliptic curves and primallity proving.
Mathematics of computation 61:29{29, 1993.

J. Balakrishnan, J. Belding, S. Chisholm, K. Eisentragr, K.E.
Stange, and E. Teske. Pairings on hyperelliptic curves.WIN-

121

122

BIBLIOGRAPHY

[BCP97]

[Benl0]

[BerO1]

[BGDM* 10]

[BGNO5]

[BGOS07]

[BJO3]

[BK98]

[BKLS02]

Women in Numbers: Research Directions in Number Theory, Higs
Institute Communications 60:87{120, 2009.

W. Bosma, J. Cannon, and C. Playoust. The Magma algedb sys-
tem. |I. The user language.J. Symbolic Comput, 24(3-4):235{265,
1997. Computational algebra and number theory (London, 18%.

N. Benger.Cryptographic Pairings: E ciency and DLP Security.
PhD thesis, Dublin City University, May 2010.

D.J. Bernstein. Multidigit multiplication for mat hematicians. Ad-
vances in Applied Mathematics2001.

J. Beuchat, J. E. Gonalez-Daz, S. Mitsunari, E. Okanoto,
F. Rodrguez-Henrquez, and T. Teruya. High-speed softare
implementation of the optimal ate pairing over Barreto-Nahrig
curves. In Joye et al. [JMO10], pages 21{39.

D. Boneh, E. Goh, and K. Nissim. Evaluating 2-DNF fanulas
on ciphertexts. In J. Kilian, editor, TCC, volume 3378 ofLecture
Notes in Computer Sciencepages 325{341. Springer, 2005.

P. S. L. M. Barreto, S. D. Galbraith, C. O'Eigeartagh, and
M. Scott. E cient pairing computation on supersingular abdian
varieties. Des. Codes Cryptography42(3):239{271, 2007.

O. Billet and M. Joye. The Jacobi model of an elliptic urve
and side-channel analysis. In M. P. C. Fossorier, T. Hoholdand
A. Poli, editors, AAECC, volume 2643 ofLecture Notes in Com-
puter Science pages 34{42. Springer, 2003.

R. Balasubramanian and N. Koblitz. The improbabiliyy that an
elliptic curve has subexponential discrete log problem ued the
Menezes - Okamoto - Vanstone algorithml. Cryptology, 11(2):141{
145, 1998.

P. S. L. M. Barreto, H. Y. Kim, B. Lynn, and M. Scott. E cient
algorithms for pairing-based cryptosystems. In Yung [Yur], pages
354{368.

BIBLIOGRAPHY 123

[BLO7a]

[BLO7b]

[BLS02]

[BLSO3]

[BLS04]

[BNO5]

[BRS11]

[BS10]

[BWOS5]

[CAG6]

D. J. Bernstein and T. Lange. Explicit-formulas da&base.
http://www.hyperelliptic.org/EFD , 2007.

D. J. Bernstein and T. Lange. Faster addition and ddboling on
elliptic curves. In K. Kurosawa, editor, ASIACRYPT , volume 4833
of Lecture Notes in Computer Scienggrages 29{50. Springer, 2007.

P. S. L. M. Barreto, B. Lynn, and M. Scott. Constructng elliptic
curves with prescribed embedding degrees. In S. Cimato, Cal@i,
and G. Persiano, editors,SCN, volume 2576 ofLecture Notes in
Computer Sciencepages 257{267. Springer, 2002.

P. S. L. M. Barreto, B. Lynn, and M. Scott. On the seldwon of
pairing-friendly groups. In M. Matsui and R. J. Zuccheratogditors,
Selected Areas in Cryptographyvolume 3006 ofLecture Notes in
Computer Sciencepages 17{25. Springer, 2003.

P. S. L. M. Barreto, B. Lynn, and M. Scott. E cient imp lementa-
tion of pairing-based cryptosystems.J. Cryptology, 17(4):321{334,
2004.

P. S. L. M. Barreto and M. Naehrig. Pairing-friendly diptic curves
of prime order. In B. Preneel and S. E. Tavares, editorsselected
Areas in Cryptography volume 3897 ofLecture Notes in Computer
Science pages 319{331. Springer, 2005.

D. Boneh, K. Rubin, and A. Silverberg. Finding compsite order
ordinary elliptic curves using the Cocks-Pinch methodJournal of
Number Theory 131(5):832{841, 2011.

N. Benger and M. Scott. Constructing tower extensignof nite
elds for implementation of pairing-based cryptography. h Hasan
and Helleseth [HH10], pages 180{195.

F. Brezing and A. Weng. Elliptic curves suitable for piring based
cryptography. Des. Codes Cryptography37(1):133{141, 2005.

S.A. Cook and S.O. AanderaaOn the minimum computation time
of functions. PhD thesis, Harvard., 1966.

124

BIBLIOGRAPHY

[CCS07]

[Chell]

[CLN11]

[CMO9]

[Coh96]

[CPO1]

[CSB04]

[CV11]

[DEMO5]

[Deu4l]

L. Chen, Z. Cheng, and N. P. Smart. Identity-based keagreement
protocols from pairings.Int. J. Inf. Sec., 6(4):213{241, 2007.

L. Chen, editor. Cryptography and Coding - 13th IMA Interna-
tional Conference, IMACC 2011, Oxford, UK, December 12-15,
2011. Proceedingsvolume 7089 ofecture Notes in Computer Sci-
ence Springer, 2011.

C. Costello, K. Lauter, and M. Naehrig. Attractive sibfamilies
of BLS curves for implementing high-security pairings. In DJ.
Bernstein and S. Chatterjee, editors)]NDOCRYPT , volume 7107
of Lecture Notes in Computer Sciencepages 320{342. Springer,
2011.

S. Chatterjee and A. J. Menezes. On cryptographic pi@cols em-
ploying asymmetric pairings - the role of psi revisitedlACR Cryp-
tology ePrint Archive, 2009:480, 2009.

H. Cohen.A course in computational algebraic number theoyyol-
ume 138. Springer-Verlag, 3rd printing, 1996.

C. Cocks and R.G.E. Pinch. ld-based cryptosystems $&d on the
Weil pairing. Unpublished manuscript, 2001.

S. Chatterjee, P. Sarkar, and R. Barua. E cient comptation of
Tate pairing in projective coordinate over general charaetistic
elds. In C. Park and S. Chee, editors,ICISC, volume 3506 of
Lecture Notes in Computer Scienggpages 168{181. Springer, 2004.

W. Castryck and F. Vercauteren. Toric forms of ellipt curves and
their arithmetic. J. Symb. Comput, 46(8):943{966, 2011.

R. Dupont, A. Enge, and F. Morain. Building curves wih arbitrary
small MOV degree over nite prime elds. J. Cryptology, 18(2):79{
89, 2005.

M. Deuring. Die typen der multiplikatorenringe elbtischer funktio-
nenkerper. Abh. Math. Sem. Hansischen Uniy.14:197{242, 1941.

BIBLIOGRAPHY 125

[Die12]

[DKS09]

[DLO3]

[DOSDO6]

[DS10]

[DSDO07]

[EdwO7]

[FCKRH11]

[FR94]

[Fre06]

[Frel0]

C. Diem. What on earth is \index calculus"? The ECC
blog: http://ellipticnews.wordpress.com/2012/05/07/246/ ,
May 2012.

L. J. Dominguez Perez, E. J. Kachisa, and M. Scott. Iptement-
ing cryptographic pairings: a magma tutorial. Cryptology ®rint
Archive, Report 2009/072, 2009 http://eprint.iacr.org/

I. M. Duursma and H. Lee. Tate pairing implementationfor hyper-
elliptic curves y2 = xP-x + d. In C. Laih, editor, ASIACRYPT,
volume 2894 ol ecture Notes in Computer Sciencgpages 111{123.
Springer, 2003.

A. J. Deveqili, C. O'Eigeartaigh, M. Scott, and R. @hab. Multi-
plication and squaring on pairing-friendly elds. Cryptology ePrint
Archive, Report 2006/471, 2006 http://eprint.iacr.org/

L. J. Dominguez Perez and M. Scott. Private communitan,
November 2010.

A. J. Devegili, M. Scott, and R. Dahab. Implementingcrypto-
graphic pairings over Barreto-Naehrig curves. In Takagi eal.
[TOOOO07], pages 197{207.

H.M. Edwards. A normal form for elliptic curves.Bulletin of the
American Mathematical Society 44(3):393{422, 2007.

L. Fuentes-Castaneda, E. Knapp, and F. Rodrgez-Henrquez.
Faster hashing toG,. In Miri and Vaudenay [MV12], pages 412{
430.

G. Frey and H.G. Ruck. A remark concerning m-divisiblity and the
discrete logarithm in the divisor class group of curvedMathematics
of computation 62(206):865{874, 1994.

D. Freeman. Constructing pairing-friendly ellipic curves with em-
bedding degree 10. In Hess et al. [HPPO6], pages 452{465.

D. M. Freeman. Converting pairing-based cryptosyams from
composite-order groups to prime-order groups. In Gilberdil10],
pages 44{61.

126

BIBLIOGRAPHY

[Fri05]

[FST10]

[Ful08]

[Galo1]

[Galos]

[Gal12]

[GHS02]

[Gil10]

[GLOY]

S. Friedl. An elementary proof of the group
law for elliptic curves. Personal webpage:
http://math.rice.edu/ ~friedl/papers/AAELLIPTIC.PDF ,
August 2005.

D. Freeman, M. Scott, and E. Teske. A taxonomy of pammg-friendly
elliptic curves. J. Cryptology, 23(2):224{280, 2010.

W. Fulton. Algebraic curves: an intro-
duction to algebraic geometry (3rd edition)
http://www.math.lsa.umich.edu/ ~wfulton/CurveBook.pdf
2008.

S. D. Galbraith. Supersingular curves in cryptogghy. In C. Boyd,
editor, ASIACRYPT , volume 2248 ofLecture Notes in Computer
Science pages 495{513. Springer, 2001.

S. D. Galbraith. Pairings, volume 317 ofLondon Mathematical
Society Lecture Noteschapter IX, pages 183{213. Cambridge Uni-
versity Press, 2005.

S. D. Galbraith. Mathematics of Public Key Cryptography Cam-
bridge University Press, March 2012.

S. D. Galbraith, K. Harrison, and D. Soldera. Impleenting the

Tate pairing. In C. Fieker and D. R. Kohel, editors,ANTS, vol-

ume 2369 ofLecture Notes in Computer Sciencepages 324{337.
Springer, 2002.

H. Gilbert, editor. Advances in Cryptology - EUROCRYPT 2010,
29th Annual International Conference on the Theory and Apjda-

tions of Cryptographic Techniques, French Riviera, May 30 June

3, 2010. Proceedingsvolume 6110 ofLecture Notes in Computer
Science Springer, 2010.

S. D. Galbraith and X. Lin. Computing pairings usingx-coordinates
only. Designs, Codes and Cryptograph$0(3):305{324, 20009.

BIBLIOGRAPHY 127

[GLS11]

[GLVO1]

[GMVO7]

[GPOS]

[GPS08]

[GS10]

[Har77]

[Hes08]

[HH10]

[His10]

S. D. Galbraith, X. Lin, and M. Scott. Endomorphismdor faster
elliptic curve cryptography on a large class of curves. Cryptology,
24(3):446{469, 2011.

R. P. Gallant, R. J. Lambert, and S. A. Vanstone. Fastr point
multiplication on elliptic curves with e cient endomorphi sms. In
J. Kilian, editor, CRYPTO, volume 2139 ol_ecture Notes in Com-
puter Science pages 190{200. Springer, 2001.

S. D. Galbraith, J. F. McKee, and P. C. Valerca. Ordnary abelian
varieties having small embedding degreedrinite Fields and Their
Applications, 13(4):800{814, 2007.

S. D. Galbraith and K. G. Paterson, editors.Pairing-Based Cryp-
tography - Pairing 2008, Second International Conferenc&gham,
UK, September 1-3, 2008. Proceedings/olume 5209 ofLecture
Notes in Computer ScienceSpringer, 2008.

S. D. Galbraith, K. G. Paterson, and N. P. Smart. Paings for
cryptographers. Discrete Applied Mathematics156(16):3113{3121,
2008.

R. Granger and M. Scott. Faster squaring in the cyclomic sub-
group of sixth degree extensions. In Nguyen and Pointcheval
[NP10], pages 209{223.

R. Hartshorne. Algebraic Geometry volume 52 ofGraduate texts
in mathematics Springer-Verlag, 1977.

F. Hess. Pairing lattices. In Galbraith and Paterso[GP08], pages
18{38.

M. A. Hasan and T. Helleseth, editorsArithmetic of Finite Fields,
Third International Workshop, WAIFI 2010, Istanbul, Turkey,
June 27-30, 2010. Proceedings/olume 6087 ofLecture Notes in
Computer Science Springer, 2010.

H. Hisil. Elliptic curves, group law, and e cient computation PhD
thesis, Queensland University of Technology, 2010.

128

BIBLIOGRAPHY

[HLX12]

[HPPO6]

[HSV06]

[HWCDO8]

[HWCDO09]

[ITO2]

[IMO10]

[JQO1]

[Karl10]

Z. Hu, P. Longa, and M. Xu. Implementing the 4-dimeni®nal
GLV method on GLS elliptic curves with j-invariant 0. Des. Codes
Cryptography 63(3):331{343, 2012.

F. Hess, S. Pauli, and M. E. Pohst, editors.Algorithmic Num-
ber Theory, 7th International Symposium, ANTS-VII, Berlin, Ger-
many, July 23-28, 2006, Proceedingsolume 4076 olLecture Notes
in Computer Science Springer, 2006.

F. Hess, N. P. Smart, and F. Vercauteren. The eta paig revis-
ited. IEEE Transactions on Information Theory, 52(10):4595{4602,
2006.

H. Hisil, K. Koon-Ho Wong, G. Carter, and E. Dawson. Twisted
Edwards curves revisited. In J. Pieprzyk, editor, ASIACRYPT ,
volume 5350 ol ecture Notes in Computer Sciengegpages 326{343.
Springer, 2008.

H. Hisil, K. Koon-Ho Wong, G. Carter, and E. Dawson. Jacobi
guartic curves revisited. In C. Boyd and J. M. Gonalez Nieo,
editors, ACISP, volume 5594 ot ecture Notes in Computer Scienge
pages 452{468. Springer, 2009.

T. Izu and T. Takagi. E cient computations of the Tate pairing
for the large MOV degrees. In P. J. Lee and C. H. Lim, editors,
ICISC, volume 2587 ofLecture Notes in Computer Sciengepages
283{297. Springer, 2002.

M. Joye, A. Miyaji, and A. Otsuka, editors. Pairing-Based Cryp-
tography - Pairing 2010 - 4th International Conference, Yamnaka
Hot Spring, Japan, December 2010. Proceedinggolume 6487 of
Lecture Notes in Computer ScienceSpringer, 2010.

M. Joye and J.J. Quisquater. Hessian elliptic curveand side-
channel attacks. In Cryptographic Hardware and Embedded
Systems|CHES 2001, pages 402{410. Springer, 2001.

K. Karabina. Squaring in cyclotomic subgroupslACR Cryptology
ePrint Archive, 2010:542, 2010.

BIBLIOGRAPHY 129

[KMO5]

[KO63]

[Kob87]

[Koh11]

[KSS08]

[Lew12]

[Lic69]

[LLPO9]

[LMN10]

[Lyn07]

[Men93]

N. Koblitz and A. Menezes. Pairing-based cryptogrdpy at high

security levels. In N. P. Smart, editor,IMA Int. Conf. , volume

3796 ofLecture Notes in Computer Scienggrages 13{36. Springer,
2005.

A. Karatsuba and Y. Ofman. Multiplication of multidi git numbers
on automata. In Soviet physics dokladwolume 7, page 595, 1963.

N. Koblitz. Elliptic curve cryptosystems. Mathematics of compu-
tation, 48(177):203{209, 1987.

D. Kohel. Addition law structure of elliptic curves Journal of
Number Theory 2011.

E. J. Kachisa, E. F. Schaefer, and M. Scott. Constriileg Brezing-
Weng pairing-friendly elliptic curves using elements in ta cyclo-
tomic eld. In Galbraith and Paterson [GPO08], pages 126{135

A. B. Lewko. Tools for simulating features of compie order bilin-
ear groups in the prime order setting. In D. Pointcheval and TJo-
hansson, editors EUROCRYPT, volume 7237 ofLecture Notes in
Computer Sciencepages 318{335. Springer, 2012.

S. Lichtenbaum. Duality theorems for curves over Rdic elds.
Inventiones mathematicag7(2):120{136, 1969.

E. Lee, H.-S. Lee, and C.-M. Park. E cient and generbized pairing
computation on abelian varieties.|IEEE Transactions on Informa-
tion Theory, 55(4):1793{1803, 2009.

K. Lauter, P. L. Montgomery, and M. Naehrig. An analsis of a ne
coordinates for pairing computation. In Joye et al. [JMO1Q]pages
1{20.

B. Lynn. On the E cient Implementation of Pairing-Based Cryp-
tosystems PhD thesis, Stanford University, June 2007.

A. J. Menezes.Elliptic Curve Public Key Cryptosystems Kluwer
Academic Publishers, 1993.

130

BIBLIOGRAPHY

[Men05]

[Men09]

[Mil85]

[Mil04]

[Min10]

[MKHOO7]

[MNTO1]

[Mon87]

[MOV93]

[MS07]

A. J. Menezes, editor.Topics in Cryptology - CT-RSA 2005, The
Cryptographers' Track at the RSA Conference 2005, San Fraisco,
CA, USA, February 14-18, 2005, Proceedingsolume 3376 olLec-
ture Notes in Computer ScienceSpringer, 2005.

A. J. Menezes. Asymmetric Pairings. Talk at ECC 200@niversity
of Calgary, Canada., August 2009.

V. S. Miller. Use of elliptic curves in cryptography In H. C.
Williams, editor, CRYPTO, volume 218 ofLecture Notes in Com-
puter Science pages 417{426. Springer, 1985.

V. S. Miller. The Weil pairing, and its e cient calcu lation. J.
Cryptology, 17(4):235{261, 2004.

H. Minkowski. Geometrie der zahlenvolume 1896. Teubner, 1910.

S. Matsuda, N. Kanayama, F. Hess, and E. Okamoto. Gimised

versions of the ate and twisted ate pairings. In S. D. Galbrtu,

editor, IMA Int. Conf. , volume 4887 ofLecture Notes in Computer
Science pages 302{312. Springer, 2007.

A. Miyaji, M. Nakabayashi, and S. Takano. New explit condi-
tions of elliptic curve traces for FR-reduction.|EICE transactions
on fundamentals of electronics, communications and computsci-
ences 2001.

P.L. Montgomery. Speeding the Pollard and ellipticurve meth-
ods of factorization.Mathematics of computation48(177):243{264,
1987.

A. J. Menezes, T. Okamoto, and S. A. Vanstone. Redug elliptic
curve logarithms to logarithms in a nite eld. IEEE Transactions
on Information Theory, 39(5):1639{1646, 1993.

R. Murty and I. Shparlinski. Group structure of elligic curves over
nite elds and applications. Topics in Geometry, Coding Theory
and Cryptography pages 167{194, 2007.

BIBLIOGRAPHY 131

[MV12]

[Nae09]

[NBS08]

[NIS99]

[NNS10]

[NP10]

[PINB11]

[Pol78]

[RS02]

A. Miri and S. Vaudenay, editors. Selected Areas in Cryptography
- 18th International Workshop, SAC 2011, Toronto, ON, Canaal,
August 11-12, 2011, Revised Selected Papevslume 7118 ofLec-
ture Notes in Computer ScienceSpringer, 2012.

M. Naehrig. Constructive and computational aspects of crypto-
graphic pairings PhD thesis, Eindhoven University of Technology,
May 2009.

M. Naehrig, P. S. L. M. Barreto, and P. Schwabe. On com
pressible pairings and their computation. In S. Vaudenay,dgor,
AFRICACRYPT , volume 5023 ofLecture Notes in Computer Sci-
ence pages 371{388. Springer, 2008.

NIST. Recommended elliptic curves for Federal Gavenent Use.
Technical report, National Institute of Standards and Techology,
July 1999.

M. Naehrig, R. Niederhagen, and P. Schwabe. New saite speed
records for cryptographic pairings. In Abdalla and BarretqAB10],
pages 109{123.

P. Q. Nguyen and D. Pointcheval, editorsPublic Key Cryptography
- PKC 2010, 13th International Conference on Practice and Té+
ory in Public Key Cryptography, Paris, France, May 26-28, 210.
Proceedings volume 6056 ofLecture Notes in Computer Science
Springer, 2010.

G. C. C. F. Pereira, M. A. Simplcio Jr., M. Naehrig, and P. S.
L. M. Barreto. A family of implementation-friendly BN elliptic
curves. Journal of Systems and Software84(8):1319{1326, 2011.

J.M. Pollard. Monte Carlo methods for index computton (mod
p). Mathematics of computation 32(143):918{924, 1978.

K. Rubin and A. Silverberg. Supersingular abelian vigties in cryp-
tology. In Yung [Yun02], pages 336{353.

132

BIBLIOGRAPHY

[SBO4]

[SBO6]

[SBC* 09a]

[SBC* 09b]

[SCA06]

[Sch85]

[Sco04]

[Sco05a]

[Sco05b]

[Sco07a]

M. Scott and P. S. L. M. Barreto. Compressed pairingsn M. K.
Franklin, editor, CRYPTO, volume 3152 ofLecture Notes in Com-
puter Science pages 140{156. Springer, 2004.

M. Scott and P. S. L. M. Barreto. Generating more MNT dptic
curves. Des. Codes Cryptography38(2):209{217, 2006.

M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Rex, and
Ezekiel J. Kachisa. On the nal exponentiation for calculaing pair-
ings on ordinary elliptic curves. In Shacham and Waters [SV¥),
pages 78{88.

M. Scott, N. Benger, M. Charlemagne, L. J. Dominguez Pez, and
Ezekiel J. Kachisa. Fast hashing tds, on pairing-friendly curves.
In Shacham and Waters [SWO09], pages 102{113.

M. Scott, N. Costigan, and W. Abdulwahab. Implememtg cryp-

tographic pairings on smartcards. In L. Goubin and M. Matsui
editors, CHES, volume 4249 ol ecture Notes in Computer Scienge
pages 134{147. Springer, 2006.

R. Schoof. Elliptic curves over nite elds and the omputation of
square roots mod p.Math. Comp, 44(170):483{494, 1985.

M. Scott. Understanding the Tate pairing. Personalebpage:
http://www.computing.dcu.ie/ ~mike/tate.html , 2004.

M. Scott. Computing the Tate pairing. In Menezes [@h05], pages
293{304.

M. Scott. Faster pairings using an elliptic curveittr an e cient en-
domorphism. In S. Maitra, C. E. V. Madhavan, and R. Venkatesa,
editors, INDOCRYPT , volume 3797 ofLecture Notes in Computer
Science pages 258{269. Springer, 2005.

M. Scott. An introduction to pairings. Talk at ICEEM RNSA
2007 Cryptography Workshop, Queensland University of Tedol-
ogy, Australia, June 2007.

BIBLIOGRAPHY 133

[Sco07b]

[Sco07c]

[Scoll]

[Sha05]

[Sil09]

[Sil10]

[Sma01]

[Smal0]

[Sta07]

[Sutl2]

[SVO7]

M. Scott. E cient implementation of cryptographic pairings. Talk
at ICE-EM RNSA 2007 Cryptography Workshop, Queensland Uni-
versity of Technology, Australia, June 2007.

M. Scott. Implementing cryptographic pairings.nl Tsuyoshi Tak-
agi, Tatsuaki Okamoto, and Eiji Okamoto, editors,Pairing-Based
Cryptography { Pairing 2007 volume 4575 ofLecture Notes in
Computer Sciencepages 177{196. Springer, 2007.

M. Scott. On the e cient implementation of pairingbased proto-
cols. In Chen [Chel1l], pages 296{308.

H. Shacham.New Paradigms in Signature Scheme$?hD thesis,
Stanford University, December 2005.

J. H. Silverman. The Arithmetic of Elliptic Curves (2nd Edition).
Number 106 in Graduate texts in mathematics. Springer-Veab,
20009.

J. H. Silverman. A survey of local and global pairirggon elliptic
curves and abelian varieties. In Joye et al. [JMO10], pageg d396.

N. P. Smart. The Hessian form of an elliptic curve. 1G@. K. Kac,
D. Naccache, and C. Paar, editorsCHES, volume 2162 ofLecture
Notes in Computer Sciencepages 118{125. Springer, 2001.

N. P. Smart. ECRYPT Il yearly report on algorithms

and keysizes (2009-2010). Technical report, ECRYPT I
{ European Network of Excellence in Cryptology, EU FP7,

ICT-2007-216676, 2010. Published as deliverable D.SPA.13
http://www.ecrypt.eu.org/documents/D.SPA.13.pdf

K. E. Stange. The Tate pairing via elliptic nets. In Bkagi et al.
[TOOOO07], pages 329{348.

A. V. Sutherland. Accelerating the CM method.LMS Journal of
Computation and Mathematics15:172{204, 2012.

N. P. Smart and F. Vercauteren. On computable isomaongsms in
e cient asymmetric pairing-based systems.Discrete Applied Math-
ematics 155(4):538{547, 2007.

134

BIBLIOGRAPHY

[SWO09]

[Too63]

[TOO007]

[VerO1]

[VerO6a]

[Ver06b]

[Verl0]

[WPO06]

[WS07]

[Yun02]

H. Shacham and B. Waters, editorsPairing-Based Cryptography
- Pairing 2009, Third International Conference, Palo Alto, CA,

USA, August 12-14, 2009, Proceedings/olume 5671 oflLecture
Notes in Computer ScienceSpringer, 2009.

A.L. Toom. The complexity of a scheme of functionalements real-
izing the multiplication of integers. In Soviet Mathematics Doklady
volume 3, pages 714{716, 1963.

T. Takagi, T. Okamoto, E. Okamoto, and T. Okamoto, eitors.
Pairing-Based Cryptography - Pairing 2007, First Internatonal
Conference, Tokyo, Japan, July 2-4, 2007, Proceedingsolume
4575 ofLecture Notes in Computer ScienceSpringer, 2007.

E. R. Verheul. Evidence that XTR is more secure tharupersingu-
lar elliptic curve cryptosystems. In B. P tzmann, editor, EURO-
CRYPT, volume 2045 ol ecture Notes in Computer Sciengegages
195{210. Springer, 2001.

F. Vercauteren. Mathematics of Pairings: Part Il.Talk at Pairing-
Based Cryptography Workshop, 2006.

F. Vercauteren. Mathematics of Pairings: Part |. &lk at Pairing-
Based Cryptography Workshop, 2006.

F. Vercauteren. Optimal pairings.IEEE Transactions on Informa-
tion Theory, 56(1):455{461, 2010.

A. Weimerskirch and C. Paar. Generalizations of the &ratsuba
algorithm for e cient implementations. Cryptology ePrint Archive,
Report 2006/224, 2006 http://eprint.iacr.org/

C. Whelan and M. Scott. The importance of the nal expo
nentiation in pairings when considering fault attacks. In akagi
et al. [TOOOO07], pages 225{246.

M. Yung, editor. Advances in Cryptology - CRYPTO 2002, 22nd
Annual International Cryptology Conference, Santa Barbar, Cali-
fornia, USA, August 18-22, 2002, Proceedingsolume 2442 oLec-
ture Notes in Computer ScienceSpringer, 2002.

BIBLIOGRAPHY 135

[ZZzH08a] C. Zhao, F. Zhang, and J. Huang. All pairings are in a
group. Cryptology ePrint Archive, Report 2008/085, 2008.
http://eprint.iacr.org/

[ZZH08b] C. Zhao, F. Zhang, and J. Huang. A note on the ate pang. Int.
J. Inf. Sec., 7(6):379{382, 2008.

136 BIBLIOGRAPHY

Index

R-ate pairing, 103 group law, 5, 8{22

explicit formulas, 13{15
group structure, 22{23
Hasse bound, 25

bilinear, 47{49 non-singular, 7

BKLS-GHS algorithm, 98, 107 point at in nity, 5, 8{13
point counting, 25{30

Chinese remainder theorem (CRT), 23 short Weierstrass equation, 6
CM equation, 87 singular, 7
supersingular, 56{58, 85{87
trace of Frobenius, 25
twisted curves, 61{64
embedding degree, 50{51
eta pairing, 103

admissable pairing, 49
ate pairing, 103, 105{108

denominator elimination, 95{98
divisor, 32{46
de nition of, 34
degree of, 34
divisor class group, 38
e ective, 39 nal exponentiation, 113{115
equivalence, 38
function of, 43
group of, 34
of a function, 34{35

Galois theory, 53{54
genus, 40{43
GLV/GLS method, 30{31, 117

Picard group, 38 Hamming weight, 111{112

principal, 36{37 homogeneous projective coordinates, 12, 19{
reduced, 39 20

support of, 34 hyperelliptic curve, 40{43

Edwards curves, 22
elliptic curve, 5{31, 117
r-torsion, 22{23, 50{58 loop shortening, 111
complex multiplication (CM), 27{28
discrete logarithm problem, 18, 23{25, 81{
83
division polynomials, 29{30
endomorphism ring, 27{28
Frobenius endomorphism, 26, 105, 108
general Weierstrass equation, 5 optimal pairing, 103, 108{111
group axioms, 17{18

Karatsuba multiplication, 102

Magma, 3
Miller's algorithm, 75{80, 98, 99

non-Weierstrass models, 20{22
not supersingular (NSS) curve, 104{105

pairing types, 58{61

137

138

INDEX

Type 1 pairing, 58

Type 2 pairing, 59

Type 3 pairing, 59, 61

Type 4 pairing, 59
pairing-friendly curve, 81{93

-value of, 83

BLS families, 89, 111, 114{115

BN family, 90, 109

de nition of, 84

KSS families, 91, 110

MNT criteria, 87

MNT curve, 88

ordinary, 87{92

parameterised families, 87{92

supersingular, 85{87

with high-degree twists, 91
projective coordinates, 98{100
projective space, 11{13

Riemann-Roch Theorem, 38{43
Schoof's algorithm, 28{30

target group, 48
Tate pairing, 70{75, 95
over nite elds, 72
reduced Tate pairing, 74
Toom-Cook multiplication, 102
towered extension elds, 100
trace map, 52{55
anti-trace map, 55
twisted curves, 61{64
cubic twists, 64
guadratic twists, 63
quartic twists, 64
sextic twists, 64

Weil pairing, 69{70, 95, 117
Weil reciprocity, 44{45

	Front Matter
	Table of Contents
	Symbols and abbreviations

	Introduction
	Elliptic curves as cryptographic groups
	The group law: the chord-and-tangent rule
	The point at infinity in projective space
	Deriving explicit formulas for group law computations
	The group axioms
	Speeding up elliptic curve computations

	Torsion, endomorphisms and point counting
	Chapter summary

	Divisors
	The divisor class group
	A consequence of the Riemann-Roch Theorem
	Weil reciprocity
	Chapter summary

	Elliptic curves as pairing groups
	The r-torsion
	Pairing types
	Twisted curves
	Chapter summary

	Miller's algorithm for the Weil and Tate pairings
	The Weil pairing
	The Tate pairing
	Miller's algorithm
	Chapter summary

	Pairing-friendly curves
	A balancing act
	Supersingular curves
	Constructing ordinary pairing-friendly curves
	Chapter summary

	The state-of-the-art
	Irrelevant factors (a.k.a. denominator elimination)
	Projective coordinates
	Towered extension fields
	Low Hamming weight loops
	The final exponentiation
	Other optimisations

	Summary

